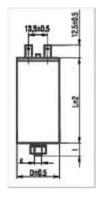
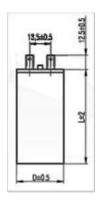
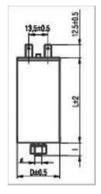
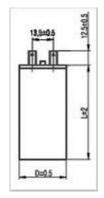
ПУСКОВЫЕ КОНДЕНСАТОРЫ СВВ60.

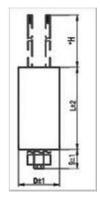
отечественный аналог **K78-22**, **K78-25**, **K78- 36**, **K78-43**.

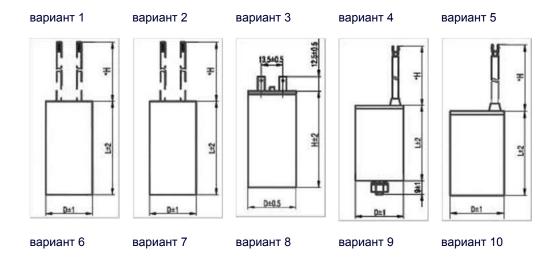

Конденсаторы предназначены для запуска асинхронных электродвигателей и создания фазосдвигающей цепи после выхода на рабочий режим.


Конденсаторы проходят обязательную операцию заливки компаундом, соответствующим классу пожаробезопасности VI европейского стандарта UL94. Корпус конденсатора не поддерживает горения и является полностью пожаробезопасным.


Технические характеристики			
Емкость конденсатора	1-150мкф		
Номинальное напряжение	250-500 B		
Отклонение по емкости	± 5%, ± 10%		
Тангенс угла потерь	до 0,0005		
Максимально допустимое напряжение между выводами	1,2 U _{ном}		
Температурные режимы среды	-40°C +85°C		
Испытание напряжением			
1) между выводами	2,15 U _{ном} x 10 сек)		
2) изоляция от корпуса	3 кВ х 1 сек		
Тип диэлектрика	полипропилен		
Исполнение корпуса			
(Π)	пластиковый		
(A)	алюминиевый, с защитой от избыточного давления (увеличение высоты корпуса на 7- 8мм)		
Крепление	M8, M12		
Выводы	клеммы, разъемы, провода, кабель		
Класс защиты	P0		


	250-320 B		400-450 B	
Емкость, мкф	диаметр, мм	высота, мм	диаметр, мм	высота, мм
1	25	57	25	57
1,5	25	57	25	57
2	25	57	25	57
2,5	25	57	25	57
3	25	57	25	57
3,75	25	57	25	57
4	25	57	30	57
4,5	30	57	30	57
5	30	57	30	70
5,5	30	57	30	70
6	30	57	30	70
7	30	57	30	70
8	30	57	30	70
9	30	70	35	70
10	30	70	35	70
11	30	70	35	70
12	35	70	35	70
12,5	35	70	40	70
13	35	70	40	70
14	35	70	40	70
15	35	70	40	70
16	35	70	40	70
18	35	70	40	70
20	40	70	45	70
22	40	70	45	70
25	40	94	45	94
30	40	94	45	94
35	40	94	45	94
40	45	94	45	120
45	45	94	45	120
50	45	94	50	120
60	45	120	50	120
70	50	120	55	120
80	55	120	55	120
90	55	120	60	120
100	60	120	60	120


Чертежи вариантов исполнения 1 ... 10



РЕКОМЕНДАЦИИ ПО ВЫБОРУ ТИПА КОНДЕНСАТОРОВ ДЛЯ АСИНХРОННЫХ ДВИГАТЕЛЕЙ

В процессе работы двигателей по обмотке течет ток, на 20-40% превышающий номинальный, поэтому при использовании электромотора в недозагруженном режиме или в режиме холостого хода, емкость рабочего конденсатора следует уменьшить.

В целях безопасности все пусковые конденсаторы должны использоваться с разрядным резистором. Сопротивление разрядного резистора подбирается так, чтобы по истечении 50 секунд полностью снять остаточное напряжение с конденсатора.

В случаях, когда конденсатор используется при последовательной схеме включения со вспомогательной обмоткой электродвигателя, напряжение на клеммах конденсатора при рабочей скорости может быть значительно выше напряжения сети. (Резонанс напряжений).

При выборе необходимой емкости и рабочего напряжения нужно учитывать фактор резонанса.

Предельное напряжение на клеммах пускового конденсатора должно быть не более 450B, а его емкость выбирается, как правило, в два и более раз больше емкости рабочего конденсатора.

Как показывает практика, на каждые 100 Вт мощности электродвигателя требуется около 6-7 мкФ. В случае, если не удается подобрать емкость в одном корпусе, допускается параллельное соединения конденсаторов $C_{\text{обш}} = C_1 + C_2 \dots + C_n$.

При правильно подобранном конденсаторе мощность трехфазного двигателя, включенного в однофазную сеть, не должна уменьшиться более чем на 30%.

	РАБОЧИЙ	ПУСКОВОЙ
ПРИМЕНЕНИЕ	в схемах асинхронных электродвигателей	в схемах асинхронных электродвигателей
ТИП ПОДКЛЮЧЕНИЯ	последовательно со вспомогательной обмоткой электродвигателя	параллельно рабочему конденсатору
В КАЧЕСТВЕ	является фазосмещающим элементом	является фазосмещающим элементом
ПРЕДНАЗНАЧЕНИЕ	позволяет получить круговое вращающееся магнитное поле, необходимое для работы электродвигателя	позволяет получить магниное поле, необходимое для повышения пускового момента электродвигателя
ВРЕМЯ ВКЛЮЧЕНИЯ	в процессе работы электродвигателя	в момент пуска электродвигателя

Два наиболее часто встречающихся способа включения пусковых конденсаторов с обмотками асинхронных двигателей.

1) Трёхфазный асинхронный электродвигатель, включаемый через конденсатор в однофазную сеть

В случае когда трехфазный электродвигатель необходимо подключить к однофазной сети, существует два возможных варианта подключения: "звезда" и "треугольник", причем наиболее предпочтительным во многих случаях является вариант "треугольник".

Приблизительный расчет для данного типа соединения производится по следующей формуле:

 $C_{paf} = k \cdot I_{cb}/U_{cetu}$, где:

k - коэффициент, зависящий от соединения обмоток.

I_ф - номинальный фазный ток электродвигателя А.

Ú_{сети} напряжение однофазной сети В.

Для схемы соединения "звезда" k = 2800, для схемы соединения "треугольник" k = 4800

Для определения пусковой емкости $C_{\text{пуск.}}$ исходят из пускового момента. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется.

Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением $C_{n.}$ = (2.5-3) $C_{p.}$ Рабочее напряжение конденсаторов должно быть в 1,5 раза выше напряжения сети.

Схема подключения

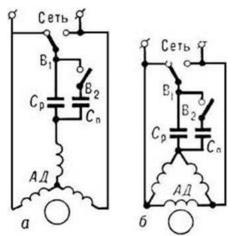
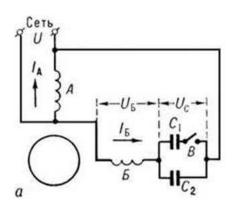


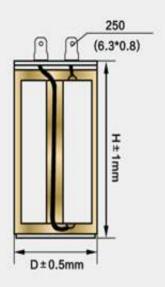
Схема включения в однофазную сеть трехфазного асинхронного двигателя с обмотками статора, соединенными по схеме "звезда" (а) или "треугольник" (б):

В₁ - переключатель направления вращения (реверс),

В₂ - выключатель пусковой емкости;


С_р - рабочий конденсатор;

С_п - пусковой конденсатор;


АД - асинхронный электродвигатель

2) Асинхронный электродвигатель, питаемый от однофазной сети и имеющий на статоре две обмотки, одна из которых включается в сеть непосредственно, а другая - последовательно с электрическим конденсатором для образования вращающегося магнитного поля. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве. Наибольший вращающий момент развивается, когда сдвиг фаз токов составляет 90°, а их амплитуды подобраны так, что вращающееся поле становится круговым. При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают; это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске. конденсаторного асинхронного электродвигателя по пусковым и рабочим характеристикам близок к трехфазному асинхронному двигателю. Применяется в электроприводах малой мощности; при мощностях свыше 1 квт используется редко вследствие значительной стоимости и размеров конденсаторов.

Схема подключения

Motor run capacitors features:

- ◆Non induction winding structure of metallic polypropylene membrane.
- ◆It is small in bulk,has long life-span and good self-healing characteristic.
- High insulating resistance, little temperature changing inside, excellent stability of capacitance.
- ♦Non-toxic and non-leaking,profit environmental protection.

Usages:

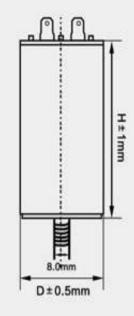
- Suitable for starting and operating 50Hz(60Hz)AC single-phase electromotor.
- ◆Widely used as the start-up and running capacitor that is special for micro water pump,cleaning machine,washing machine,and single-phase household electrical appliances.

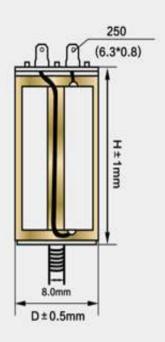
Motor run capacitor alternate design include the followings:

- Use round plastic shell, and insulation sealed lid for sealing, plastic lid for sealing or resin for sealing.
- ◆Flat bottom or fixing stud M8*12
- ◆Fasten terminals,Lug,wire,cable.
- ◆Plastic can,ABS,PC.

Motor run capacitor specification

1-100mfd	
±5%, ±10%	
250v,370v,400v,450v	
50/60Hz	
40/85/21	
T-T≥3000MΩ.uf(20°C.100VDC)	
T-T≥2000MΩ.uf(20°C.100VDC)\	
Tan 8 < 0.002 (100Hz,20℃)	
UL,TUV,CE	
Between the eletrodes:2.0Un2S	
Between the eletrode and the shell:2000vac 2S	


CBB60-A


СВВ60-В

CBB60-C

CBB60-D

Motor run capacitor Dimensions:

MFD	450'	VAC	250V	AC
	D(mm)	H(mm)	D(mm)	H(mm
1mfd	30	50	30	50
3mfd	30	50	30	50
5mfd	30	50	30	50
8mfd	35	60	30	50
10mfd	35	60	30	50
12mfd	35	70	35	60
15mfd	38	70	35	60
18mfd	39	70	35	60
20mfd	40	70	35	60
25mfd	42	80	34	68
30mfd	42	90	42	70
35mfd	45	90	42	70
40mfd	50	90	42	70
45mfd	50	90	42	90
50mfd	50	100	42	90
55mfd	50	100	45	90
60mfd	50	100	45	90
70mfd	50	120	50	100
80mfd	60	120	50	100
90mfd	60	120	50	100
100mfd	60	120	50	100

CBB60-E

Motor run capacitors features:

- Non induction winding structure of metallic polypropylene membrane.
- ♦ It is small in bulk, has long life-span and good self-healing characteristic.
- High insulating resistance, little temperature changing inside, excellent stability of capacitance.
- ◆Non-toxic and non-leaking,profit environmental protection.

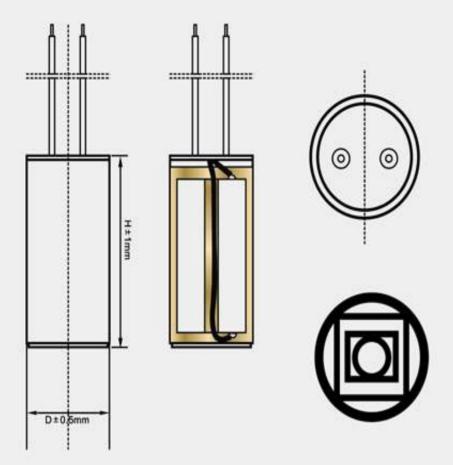
Usages:

- Suitable for starting and operating 50Hz(60Hz)AC single-phase electromotor.
- ◆Widely used as the start-up and running capacitor that is special for micro water pump,cleaning machine,washing machine,and single-phase household electrical appliances.

Motor run capacitor alternate design include the followings:

- Use round plastic shell, and insulation sealed lid for sealing, plastic lid for sealing or resin for sealing.
- ◆Flat bottom or fixing stud M8*12
- ◆Fasten terminals,Lug,wire,cable.
- ◆Plastic can,ABS,PC.

Motor run capacitor specification


Capacitance range:	1-100mfd	
Capacitance tolerance:	±5%, ±10%	
Rated Alternate Voltage:	250v,370v,400v,450v	
Rated frequency:	50/60Hz	
Operating temp	40/85/21	
Insulation Resistance:	T-T>3000M \(\Omega\).uf(20°C.100VDC)	
	T-T>2000M \(\Omega\).uf(20°C.100VDC)\	
Dissipation Factor:	Tan δ < 0.002 (100Hz,20℃)	
Approvals	UL,TUV,CE	
Endurance Voltage:	Between the eletrodes:2.0Un2S	
	Between the eletrode and the shell:2000vac 2S	

MFD	450VAC		250VAC	
	D(mm)	H(mm)	D(mm)	H(mm
1mfd	30	50	30	50
3mfd	30	50	30	50
5mfd	30	50	30	50
8mfd	35	60	30	50
10mfd	35	60	30	50
12mfd	35	70	35	60
15mfd	38	70	35	60
18mfd	39	70	35	60
20mfd	40	70	35	60
25mfd	42	80	34	68
30mfd	42	90	42	70
35mfd	45	90	42	70
40mfd	50	90	42	70
45mfd	50	90	42	90
50mfd	50	100	42	90
55mfd	50	100	45	90
60mfd	50	100	45	90
70mfd	50	120	50	100
80mfd	60	120	50	100
90mfd	60	120	50	100
100mfd	60	120	50	100

CBB60-J

CBB60-K

CBB60-L

CBB60-M