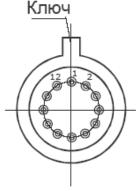
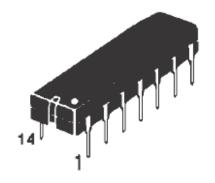
Два стробируемых компаратора напряжения с общим ТТЛ-выходом

Микросхемы **521CA101**, **521CA1**, **K521CA101**, **K554CA1** являются сдвоенными быстродействующими стробируемыми компараторами напряжения (КН) с общим выходом. Выходы компараторов объедены, но каждый компаратор имеет отдельный вход стробирования. При подаче на вход стробирования напряжения НИЗКОГО уровня пробивается соответствующий стабилитрон и запирает транзистор, база которого подключена к нему. Таким образом, при подаче на оба входа стробирования напряжения НИЗКОГО уровня напряжение на выходе также примет НИЗКИЙ уровень.


Микросхемы изготавливаются для использования в аппаратуре широкого применения. КН **521CA101, 521CA1** повышенной надежности дополнительно маркируются индексом **ОСМ**.

Тип изделия	Номер ТУ	Тип корпуса
521CA101	бК0.347.015 ТУ1	3107.12-1
521CA1	бК0.347.015 ТУ1	301.12-1
Б521CA1-4	бК0.347.015 ТУ1	б/к
K521CA101	бК0.348.279-01 ТУ	3107.12-1
K521CA1	бК0.348.279-01 ТУ	301.12-1
K554CA1	бК0.348.279-01 ТУ	201.14-1


Таблица назначения выводов

	Tuorinda hasha torinzi belebadeb										
Номер вывода	а, тип корпуса	Обозначение	Назначение вывода								
3107.12-1	201.14-1										
301.12-1											
1	12	GND Общая точка источников пита									
2	13	STR1	Вход стробирования 1								
5	2	-IN1	Вход инвертирующий 1								
6	3	+IN1	Вход неинвертирующий 1								
7	4	-VS Отрицательное напряжение									
/	4	-73	питания								
8	5	+IN2	Вход неинвертирующий 2								
9	6	-IN2	Вход инвертирующий 2								
10	9	STR2	Вход стробирования2								
11	10	OUT	Выходное напряжение								
12	11	+VS	Положительное напряжение								
12	12 11 +49		питания								

Схема расположения выводов

Корпуса 3107.12-1, 301.12-1

Корпус 201.14-1

Габаритные чертежи указанных корпусов приведены ниже

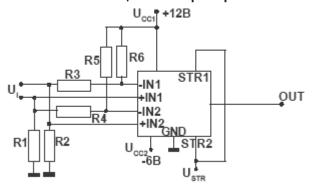
Основные электрические параметры при температуре: 0°C ÷ 70°C

Основные электрические параметры при температуре: 0°C ÷ 70°C												
						Нор	ма					
Наименование параметра, единица измерения	Буквен. обозна-	5210	CA101	521	CA1	Б521	CA1-4		CA101 1CA1	K55	4CA1	Приме- чание
ogga noopo	чение	не менее	не более	не менее	не более	не менее	не более	не менее	не более	не менее	не более	
Напряжение смещения нуля, мВ $(U_{CC1}=12,0\ B,\ U_{CC2}=-6,0\ B,\ U_{O}=1,4\ B,\ R_G=200\ Om)$	Uıo	-3,5	3,5	-3,5	3,5	-3,5	3,5	-7,5	7,5	7,5	7,5	
Средний входной ток, мкА (U _{CC1} = 12,0 B, U _{CC2} = -6,0 B, U _O = 1,4 B)	I IAV	-75	75	-75	75	-75	75	-75	75	-75	75	
Разность входных токов, мкА (U _{CC1} = 12,0 B,U _{CC2} = -6,0 B, U _O =1,4 B)	l _{io}	-10	10	-10	10	-10	10	-10	10	-10	10	
Коэффициент усиления напряжения, ($U_{\text{CC1}} = 12,0 \text{ B}, U_{\text{CC2}} = -6,0 \text{ B}, U_{\text{O}} = 1,4 \text{ B}, \Delta U_{\text{O}} = 500 \text{ mB}$)	Αυ	750	-	750	-	750	-	750	-	750	-	
Выходное напряжение высокого уровня,В $(U_{CC1}=12,0\ B,\ U_{CC2}=-6,0\ B,\ U_{ =}-20\ MB)$	U он	2,5	5	2,5	5	2,5	5	2,5	5	2,5	5	
Выходное напряжение низкого уровня ,B $(U_{CC1}=12,0\ B,\ U_{CC2}=-6,0\ B,\ U_{ =}=20\ MB)$	U _{OL}	-	0,3	-	0,3	1	0,3	1	0,3	-	0,3	
Ток потребления от положительного источника питания, мА (U_{CC1} = 12,0 B, U_{CC2} = -6,0 B, U_{I} = 20 мВ)	I _{CC1}	-	11,5	-	11,5	-	11,5	-	11,5	-	11,5	
Ток потребления от отрицательного источника питания , мА (U_{CC1} = 12,0 B, U_{CC2} = -6,0 B, U_{I} = 20 мВ)	I _{CC2}	-	6,5	-	6,5	1	6,5	1	6,5	-	6,5	
Ток стробирования, мА	I _{STROBE}	-	2,5	-	2,5	-	2,5	-	2,5	-	2,5	
Время задержки, нс $(U_{\text{CC1}} = 12 \text{ B}, U_{\text{CC2}} = -6 \text{ B}, U_{\text{REF}} = 100 \text{ мB}, U_{\text{G}} = 105 \text{ мB}, U_{\text{O}} = 1,4 \text{ B})$	t _{DLH}	1	110	-	110	1	110	1	120	-	120	
Коэффициент ослабления синфазных входных напряжений, дБ	K _{CMR}	70	-	70	-	70	-	70	-	70	-	

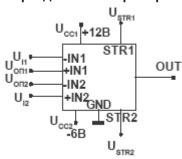
Примечания:

Измерения параметров, указанных в таблице, проводится для обоих компараторов.
 До измерения параметра К_{СМВ} на входы предварительно подаётся предельное значение напряжения U_{IC}=±6 В.
 Значения, отмеченные * распространяются на изделия, начинающиеся с буквы К.

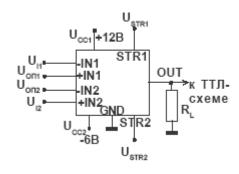
Предельные и предельно допустимые значения режимов эксплуатации

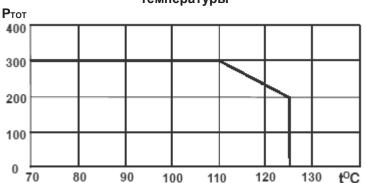

Наименование параметра, единица измерения	Буквен- ное обозна-	ное допустимый		ома Предел режим	ьный	Время воздействия предельного	Приме- чание
	начение	не	не более	не менее	не более	режима	
Напряжение источника питания положительной полярности. В	U _{CC1}	10,8	13,2*	-	14*	2 часа	
Напряжение источника питания отрицательной полярности, В	U _{CC2}	-6,6	-5,4	-7*	-		
Входное дифференциальное напряжение, В	U _{ID}	-4,5	4,5	-5	5	2 часа	-
Сопротивление нагрузки, кОм	R∟	1**	-	-	-	2 часа	1
Входное напряжение стробирования, В	U _{STROBE}	0	6	0	6		

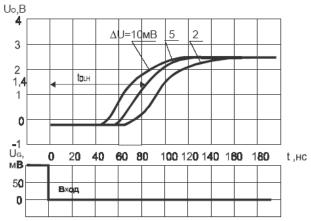
Примечание:

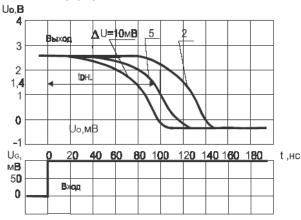

- 1 *При условии соблюдения требований к допустимой мощности рассеивания (P_{тот} ≤ 300 мВт).
- 2 **Допускается уменьшение сопротивления нагрузки до 510 Ом, при условии соблюдения требований к допустимой мощности рассеивания и при токе нагрузки не более 5 мА.
- 3 Предельные режимы эксплуатации для изделий начинающихся с буквы "К" не оговариваются.

Основные схемы применения

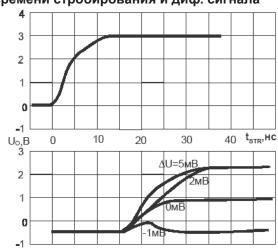

Схема с совмещённым стробированием


Схема с раздельным стробированием

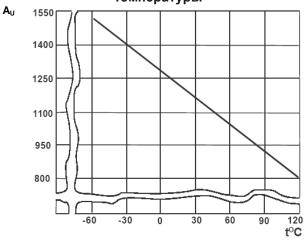

Схема сопряжения с ТТЛ - схемами


Зависимость предельно-допустимой мощности Ртот от температуры

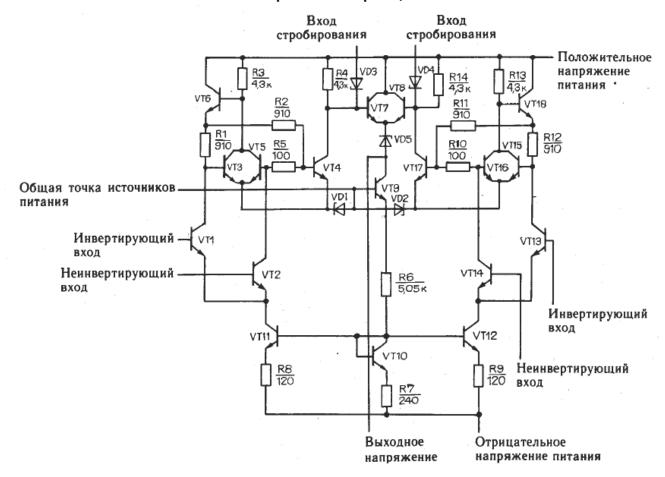
Зависимость времени задержки выключения t_{DLH} от дифференциального сигнала на входе

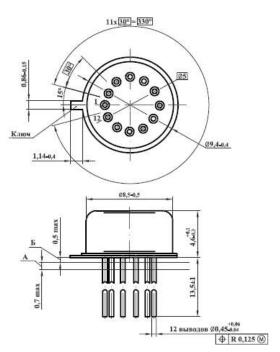


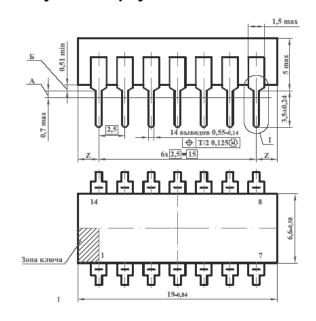
Зависимость времени задержки включения t_{DHL} от дифференциального сигнала на входе



Зависимость выходного напряжения от времени стробирования и диф. сигнала




Зависимость коэффициента усиления от температуры


Схема электрическая принципиальная

Габаритные чертежи используемых корпусов

Корпус 3107.12-1 В корпусе 301.12-1 дл. выводов 20±1мм

Корпус 201.14-1

Компараторы напряжения

Компараторы напряжения **521CA201**, **521CA2**, **P554CA2**, **Б521CA2-1**, **K521CA201**, **K554CA201**, **K554CA2** являются компараторами напряжения (КН) общего применения и изготавливаются для применения как в специальной аппаратуре, так и в аппаратуре широкого применения. КН **521CA201**, **521CA2**, **P554CA2** повышенной надежности дополнительно маркируются индексом **ОСМ**.

Тип изделия	НомерТУ	Тип корпуса	Диапазон рабочих температур
521CA201	бК0.347.015ТУ1	3101.8-1	-60°С до +125°С
521CA2	бК0.347.015ТУ1	301.8-2	-60°C до +125°C
P554CA2	бК0.347.473-01ТУ	2101.8-1	-60°С до +100°С
Б521CA2-1	бК0.347.015ТУ1	б/к	-60°C до +100°C
K521CA201	бК0.348.279-01ТУ	3101.8-1	-45°C до +85°C
K521CA2	бК0.348.279-01ТУ	301.8-2	-45°C до +85°C
K554CA2	бК0.348.279-01ТУ	201.14-1	-45°C до +85°C
K554CA201	бК0.348.279-01ТУ	2101.8-1	-45°C до +85°C

Таблица назначения выводов

Номер в	ывода, тип н	корпуса	Обозна-	Назначение вывода	
3101.8-1	б/к	2101.8-1	201.14-1	чение	
301.8-2					
4	4	4	0	OND	05
1	1	1	2	GND	Общая точка ист. питания
2	2	2	3	+IN	Неинвентирующий вход
3	3	3	4	-IN	Инвертирующий вход
4	4	4	6	V-	Питание U _{сс2} (минус)
5	5	5	1,5,7,8	NC	Не задействован
6	6	6	10,12,13,14	NC	Не задействован
7	7	7	9	OUT	Выход
8	8	8	11	V ⁺	Питание U _{сс1} (плюс)

Примечание: Изделия Б521CA2-1 поставляются как Б521CA2-4 с дополнительными промуслугами по согласованным Поставщиком и Потребителем Протоколам.

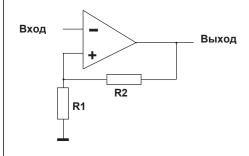
Габаритные чертежи указанных выше корпусов приведены ниже

Основные электрические параметры при приемке и поставке

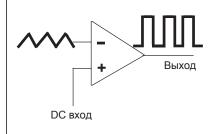
Наименование параметра,	Буквен.	Норма										Темпер.
единица измерения	обознач.		CA201 CA2	P554	ICA2	Б521	CA2-1	l	CA201 1CA2	1	CA201 4CA2	°C
		не менее	не более	не менее	не более	не менее	не более	не менее	не более	не менее	не более	
Напряжение смещения нуля,	U _{io}		5		5		5		7,5		7,5	25
мВ			6		6		6					125(100),
$(U_{CC1} = 12.0 \text{ B}, U_{CC2} = -6.0 \text{ B}, U_{O} = 1.4 \text{ B},$									10		10	85*
$R_G = 50 \text{ Om}$			6		6		6		10		10	-60, -45*
Выходное напряжение	U _{OH}	2,5	4	2,5	4	2,5		2,5	4	2,5	4	25
высокого уровня,В		2		2		2,4						125,(100),
(U _{CC1} =12,0 B, U _{CC2} =-6,0 B, U _I =-20 mB,								2		2		85*
I _н =5 мА)		2,4		2.4		2,4		2,4		2,4		-60,-45*
Выходное напряжение	U _{oL}		0,3		0,3		0,3		0,3		0,3	25
низкого уровня,В			0,3		0.3		0,3					125,(100),
(U _{CC1} = 12,0 В, U _{CC2} = -6,0 В, U _I = 20 мВ)									0,3		0,3	85*
			0.3		0.3		0,3		0,3		0,3	-60,-45*
Средний входной ток, мкА	I _{IAU}		75		75		75		75		75	25
(U _{CC1} = 12,0 B, U _{CC2} = -6,0 B, U _O = 1,4B)			150		150		150					125,(100),
									150		150	85*
			150		150		150		150		150	-60,-45*
Разность входных токов, мкА	I _{IU}		10		10		10		10		10	25
(U _{CC1} = 12,0 B, U _{CC2} = -6,0 B, U _O = 1,4B)			20		20		20					125,(100),
									20		20	85*
			20		20		20		20		20	-60,-45*
Ток потребления, мА	I _{CC1} /I _{CC2}		9/8		9/8		9/8		9/8		9/8	25
(U _{CC1} = 12,0 В, U _{CC2} = -6,0 В, U _I = 20 мВ)			10/9		10/9		10/9					125,(100),
									10/9		10/9	85*
			10/9		10/9		10/9		10/9		10/9	-60,-45*
Коэффициент усиления	A _U	750		750		750		750		750		25
напряжения		500		500		500						125,(100),
$(U_{CC1} = 12,0 \text{ B}, U_{CC2} = -6,0 \text{ B}, U_{O} = 500 \text{ mB},$								500		500		85*
U _O = 1,4 B)		500		500		500		500		500		-60,-45*
Время задержки выключения, нс	t _{DLH}		120		120		120		120		120	25
(U _{CC1} = 12,0 B, U _{CC2} = -6,0 B, U _O = 1,4 B)			325									125
			120									-60
Коэффициент ослабления син-	CMR	70		70		70		70		70		25
фазных входных напряжений, дБ												
$(U_{CC1} = 12.0 \text{ B}, U_{CC2} = -6.0 \text{ B}, U_{O} = 1.4 \text{ B})$												

Примечание:

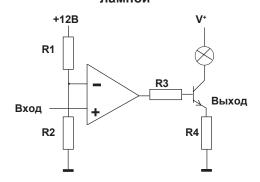
- 1. В скобках указаны значения температур для Б521СА2-1, Р521СА2.
- 2. Значения, отмеченные * распространяются на изделия, начинающиеся с буквы К.

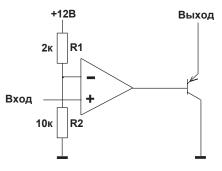

Наименование параметра,	допустимы Буквенное		Норм	Время	1e		
единица измерения	обозначе- ние пара- метра		ьно-допу- й режим	Предел реж		воздействия предельного	Примечание
	Метра	не менее	не более	не менее	не более	режима эксплуатации	Приг
Напряжение питания, В	U _{cc1}	10,8	13,2	10,8	14*	3 часа	1
	U _{CC2}	-6,6*	-5,4	-7*	-5,4		
Входное дифферециальное	U _i	-4,5	4,5	-5	5	3 часа	
напряжение, В							
Сопротивление нагрузки, кОм	R _L	1**		1**			2

Примечания:

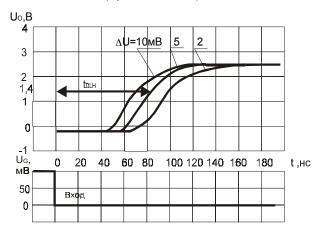

- 1. * При условии соблюдения требований к допустимой мощности рассеивания.
- 2. ** Допускается в предельном режиме уменьшение сопротивления нагрузки до 510 Ом при условии соблюдения требований к допустимой мощности рассеивания и при I_L не более 5 мА.
- 3. Предельные режимы эксплуатации для изделий начинающихся с буквы "К" не оговариваются.

Основные схемы применения

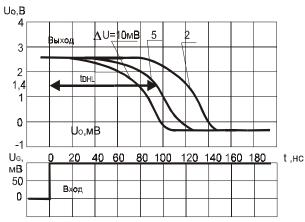

Триггер Шмитта

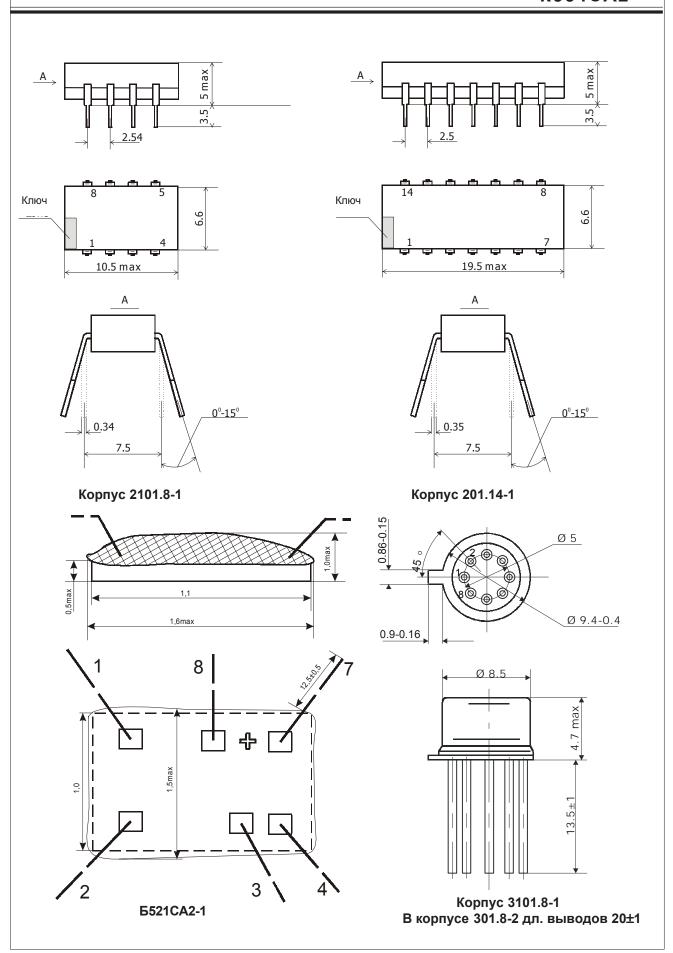

Широкоимпульсный модулятор

Детектор уровня с индикаторной лампой



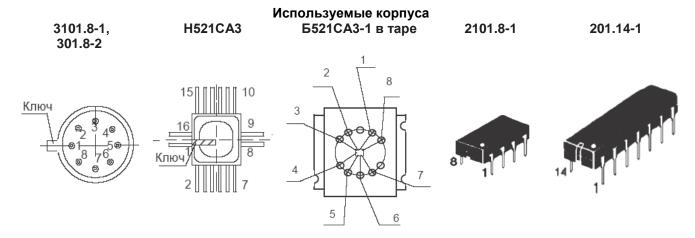
Приёмник с увеличенным выходным током




Схема электрическая R5 3.9k R4 2.8k Q6 R3 1.1k Q7 Q5 R2 500 Q4 D2 500 6.2B Q3 Выход Неинвертирующий Q2 вход D1 Инвертирующий: Q1 6.2B вход Общая точка Q8 R6 1.7k Q9 Q10 R7 R8 68 100

Зависимость времени задержки выключения (t_{DH}) от дифференциального сигнала на входе $\Delta U = U_G - U_{REF} = ($ при $U_{REF} = 100$ мB)

Зависимость времени задержки включения (t_{DL}) от дифференциального сигнала на входе $\Delta U = U_G - U_{REF}$ (npu $U_{REF} = 100 MB$)


Компараторы напряжения с универсальным выходом

Компараторы напряжения **521CA3**, **521CA301**, **P554CA3A**, **Б521CA3-1**, **H521CA3**, **K521CA301**, **K554CA301**, **K554CA3** являются компараторами напряжения (КН) общего применения с малым входным током и широким диапазоном напряжений питания. Они могут использоваться в том числе с однополярным источником питания, например, +5 В или -30 В. Компаратор имеет два выхода: открытый коллектор и эмиттер. При этом нагрузка может быть подключена к земле, положительной или отрицательной шинам питания. КН изготавливаются для использования в аппаратуре широкого применения. КН **521CA301**, **521CA3**, **P554CA3A**, **Б521CA3-1** повышенной надежности дополнительно маркируются индексом **ОСМ**.

Номер ТУ	Тип корпуса
бК0.347.015 ТУ2	3101.8-1
бК0.347.015 ТУ2	301.8-2
бК0.347.473-02 ТУ	2101.8-1
бК0.347.115 ТУ2	б/к
бК0.347.015 ТУ2	H04.16-2B
бК0.348.279-02 ТУ	3101.8-1
бК0.348.279-02 ТУ	201.14-1
бК0.348.279-02 ТУ	2101.8-1
	бК0.347.015 ТУ2 бК0.347.015 ТУ2 бК0.347.473-02 ТУ бК0.347.115 ТУ2 бК0.347.015 ТУ2 бК0.348.279-02 ТУ бК0.348.279-02 ТУ

Таблица назначения выводов

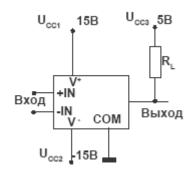
Но	мер вывода, т	гип корпуса	Обозна-	Назначение вывода		
3101.8-1 301.8-2 б/к (гиб. в-да)	H04.16-2B	2101.8-1	201.14-1	чение		
1	4	1	2	COM	Эмиттерный выход	
2	5	2	3	+IN	Неинвертирующий вход	
3	6	3	4	-IN	Инвертирующий вход	
4	1	4	6	V-	Питание U _{CC2} (-15 B)	
5	9	5	7	BAL	Балансировка	
6	12	6	8	BAL/STR	Стробирование, баланс	
7	13	7	9	OUT	Коллекторный выход	
8	1	8	11	V+	Питание U _{CC1} (плюс)	

Габаритные чертежи указанных корпусов приведены ниже

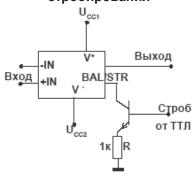
Основные электрические параметры при температуре: 0°C ÷ 70 °C

Букв.	Норма										Приме-
обозна- чение	521C	A301	H5210	CA3	Б521СА3-1		K554CA3A		K554C	43Б	чания
	менее	более	_			_	менее	не более	_	_	
Uıo	-3	3	-3	3	-3	3	-3	3	-7,5	7,5	
Usat	-	1,5	-	1,5	-	1,5	-	1,5	-	1,5	
lı .	-	100	-	100	-	100	-	100	-	250	
lio	-	10	-	10	-	10	-	10	-	50	
Au	150к	-	150к	-	150к	-	150к	-	150к	-	
I _{CC1}	-	6	-	6	-	6	-	6	-	7,5	
Icc2	-	5	-	5	-	5	-	5	-	5	
t _{DLH}	-	300	-	300	-	300	-	300	-	370	
	Uю Usat Iп Icc Icc Icc Icc	обозна- чение	Second	Обозна-чение 521САЗ Б521САЗО1 Н521С Н6 НЕ НЕ НЕ МЕНЕЕ UIO -3 3 -3 USAT - 1,5 - II - 100 - Au 150к - 150к Icc1 - 6 - Icc2 - 5 -	Обозначение 521САЗ Н521САЗА Н521САЗА не менее более менее более не менее более менее более Uю -3 3 -3 3 Usat - 1,5 - 1,5 Iю - 100 - 100 Au 150к - 150к - Icc1 - 6 - 6 Icc2 - 5 - 5	Обозна-чение 521САЗ Б521САЗА Б521САЗА Н521САЗ Б521САЗА Н521САЗ Н521САЗ Н621САЗ Б521САЗА Н521САЗ Н621САЗ Н621CAЗ Н621САЗ Н621САЗ Н621САЗ Н621САЗ Н62	Обозначение 521САЗО1 Н521САЗА Н521САЗ Н521САЗ Н521САЗ Н521САЗ НБС КОЛЕЕ не менее более менее более менее более менее более не менее более менее более менее более менее более Uю -3 3 -3 3 -3 3 Usar - 1,5 - 1,5 - 1,5 Iю - 100 - 100 - 100 Au 150к - 150к - 150к - Icc1 - 6 - 6 - 6 Icc2 - 5 - 5 - 5	S21CA3	S21CA3 P521CA3A S521CA3-1 K521CA301A	Signature Sig	S21CA3

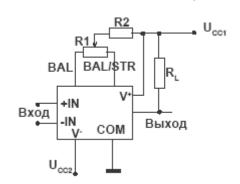
Предельные и предельно допустимые значения режимов эксплуатации

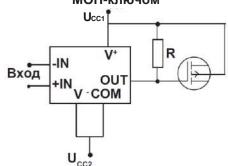

			Hop	ома		Время			
Наименование параметра,	Буквен-	Преде	льно-	Преде	льный	воздействия			
единица измерения	ное		допустимый		MN	предельного режима			
	обозна-		режим			эксплуатации			
	начение	не	не	не	не	не более			
		менее	более	менее	более				
Напряжение источника питания положительной полярности, В	U _{CC1}	13,5	16,5	11,0	17,0				
Напряжение источника питания отрицательной полярности, В	U _{CC2}	-16,5	-13,5	-17,0	-11,0				
Синфазное входное напряжение, В при U _{CC} = ±16,5 В	Uıc	-15,0	15,0	-15,2	15,2	2 ч			
Входное напряжение, В	Uı	-	30*	-	30,1*	24			
Напряжение между выводами 8(1) и 4(8), В	-	27	33	4,5	33,4				
Напряжение между выводами 7(13) и 1(4), В	-	-	33	-	33,4				

Примечание:


- 1 * Абсолютные значения напряжений на входных выводах микросхем не должны превышать абсолютных значений напряжений источников питания.
- 2 Значения синфазных входных напряжений приведены для питания Ucc=±16,5 В.
- 3 Мощность, рассеиваемая компаратором, не должна превышать 500мВт. При температуре окружающей среды выше 75° C рассеиваемая мощность определяется по формуле: $P_{\text{Тот}}=500 (t_{\text{окр.cp}} 75^{\circ}\text{C})/R_{\text{Tn-c}}$, где $R_{\text{Tn-c}}=0,17^{\circ}\text{C}$ /мВт тепловое сопротивление (кристалл окр. среда).
- 4 Предельные режимы эксплуатации для изделий, начинающихся с буквы "К" не оговариваются.

Основные схемы применения


Основная схема включения


Схема включения в режиме стробирования

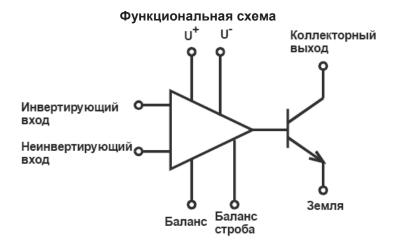


Схема включения с балансировкой

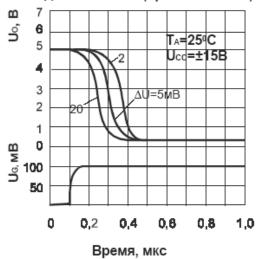
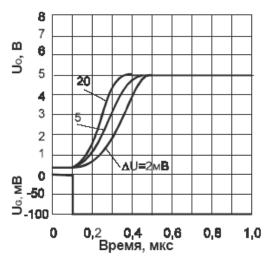
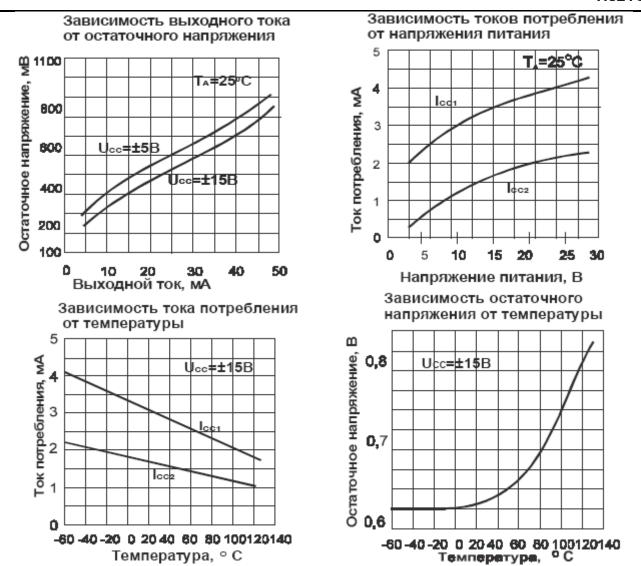


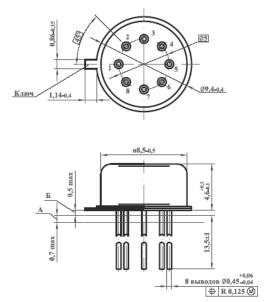
Схема включения в режиме управления МОП-ключом


Зависимость времени задержки (tohl) от дифференциального сигнала на входе ∆U=U_G-U_{REF} (приU_{REF} =100мВ)

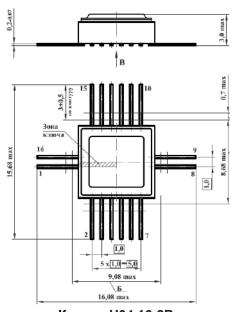
Зависимость времени задержки от ёмкости нагрузки



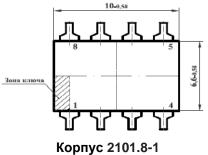
Зависимость времени задержки (tolн) от дифференциального сигнала на входе ∆U=U_G-U_{REF} (приU_{REF} =100мВ)

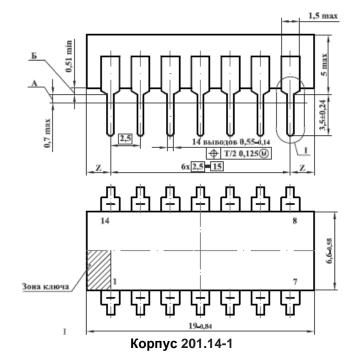


Зависимость коэффициента усиления от питающих напряжений



Габаритные чертежи используемых корпусов


Корпус 3101.8-1, 301.8-2 (дл. выводов 20±1мм)



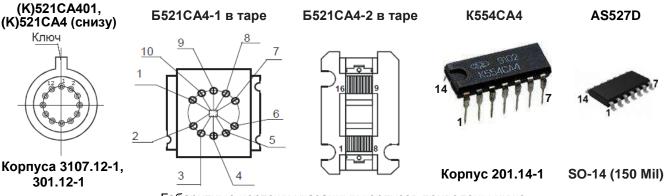
Корпус Н04.16-2В

Габаритные чертежи используемых корпусов (продолжение)

Быстродействующий компаратор напряжения с противофазными стробируемыми ТТЛ-выходами

- Типовое время задержки 15 нс
- С прямым и инверсным выходами
- Выходы согласуются с ТТЛ или ЭСЛ схемами

Микросхемы 521CA401, 521CA4, Б521CA4-1, Б521CA4-2, К521CA401, К554CA4, AS527D являются быстродействующими стробируемыми компараторами напряжения (КН) с прямым и инверсным выходами. Аналоговая часть микросхемы состоит из двухкаскадного операционного усилителя с противофазными выходами. Выходы усилителя подключены к одному из входов ТТЛ-элементов 2-И-НЕ, входящему в цифровую часть микросхемы. Вторые входы компараторов служат входами стробирования. Микросхемы изготавливаются для использования в аппаратуре широкого применения.


КН 521CA401, 521CA4 повышенной надежности дополнительно маркируются индексом ОСМ. Размеры кристалла 1,7 × 1,7 × 0,38 мм.

Тип изделия	Номер ТУ	Тип корпуса	(K)521CA401 (K)521CA4 (вид сверху)	К554СА4 AS527D (вид сверху)
521CA401	бК0.347.015 ТУ3	3107.12-1		1 14
521CA4	бК0.347.015 ТУ3	301.12-1	2 12	2 13
Б521СА4-1	бК0.347.115-03 ТУ	б/к (гибкие в-да)	(3) (11)	3 12
Б521СА4-2	бК0.347.454-04ТУ	б/к (полиимид)		4 9 11
K521CA401	бК0.348.279-01 ТУ	3107.12-1	4 10	
K521CA4	бК0.348.279-01 ТУ	301.12-1	5 9	5
K554CA4	бК0.348.279-01 ТУ	201.14-1	6 8	6 9
AS527D	-	SO-14 (150 Mil)	7	7 8

Таблица назначения выводов

таолица назначения выводов										
	Номер в	вывода, тип і	корпуса	Обозна-						
3107.12-1 301.12-1	Б521СА4-1 гибкие в-да	Б521СА4-2 полиимид	201.14-1 SO-14	чение	Назначение вывода					
1	1	8	3	- IN	Аналоговый вход 1					
2	2	9	4	+IN	Аналоговый вход 2					
3	3	11	6	Ucc2	Питание Ucc2(минус)					
4	4	12	8	STR2	Логический вход 2 (строб 2)					
5	5	13	9	OUT2	Логический выход 2					
6	6	16	10	GND	Общий					
7	7	1	11	OUT1	Логический выход 1					
8	8	4	13	STR1	Логический вход 1 (строб 1)					
9	9	5	14	Ucc3	Питание Ucc3(плюс)					
10	10	6	1	Ucc1	Питание Ucc1(плюс)					

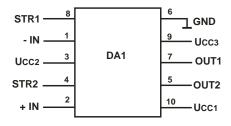
Схема расположения выводов

Габаритные чертежи указанных корпусов приведены ниже

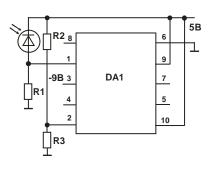
Основные электрические параметры при температуре: 0°C ÷ 70°C

Основные электрические параметры при температуре: 0°C ÷ 70°C												
Наименование параметра, единица измерения	Буквен. обозна-			Б521СА4-1				K521CA401 K521CA4		K554CA4 AS527D		Приме- чание
измерения	чение	не менее	не более	не менее	не более	не менее	не более	не менее	не более	не менее	не более	чание
Напряжение смещения нуля, мВ (U_{CC1} = 9,9 В, U_{CC2} = -9,9 В, U_{CC3} = 5 В, R_{G} = 50 Ом)	U _{io}	-4	4	-4	4	-4	4	-5	5	-5	5	1
Средний входной ток, мкА $(U_{CC1}=9,9\ B,\ U_{CC2}=-9,9\ B,\ U_{CC3}=5\ B)$	I _{IAV}	-2	2	-2	2	-2	2	-2	2	-2	2	1
Разность входных токов, мкА $(U_{CC1} = 9.9 \text{ B}, U_{CC2} = -9.9 \text{ B}, U_{CC3} = 5 \text{ B})$	I _{IO}	-0,5	0,5	-0,5	0,5	-0,5	0,5	-0,75	0,75	-0,75	0,75	1
Выходное напряжение высокого уровня,В (U _{CC1} = 9,9 B, U _{CC2} = -9,9 B, U _{CC3} = 4,75 B,U _I =(0,1±0,05)В, U _{STROBE} = 0,8B, I _{OH} =1 мА)	U _{он}	2,5	4,5	2,5	4,5	2,5	4,5	2,7	4,5	2,7	4,5	1
Выходное напряжение низкого уровня, В (U_{CC1} = 9,9 B, U_{CC2} = -9,9 B, U_{CC3} = 4,75 B, U_{I} =(0,1±0,05)B, U_{STROBE} = 2 B, I_{OL} =10 мA)	U _{OL}	0	0,5	0	0,5	0	0,5	0	0,5	0	0,5	1
Ток потребления от положительного источника питания, мА (U_{CC1} = 9,9 B, U_{CC2} =-9,9B, U_{CC3} = 5,25B, U_{I} = (0,1±0,05) B)	I _{CC1}	-	3,75	-	3,75	-	3,75	-	4	-	4	1
Ток потребления от отрицательного источника питания , мА (U_{CC1} = 9,9 B, U_{CC2} =-9,9B, U_{CC3} = 5,25B, U_{I} = (0,1±0,05) B	I _{CC2}	-	7,5	-	7,5	-	7,5	-	8,5	-	8,5	1
Ток потребления от положительного источника питания, мА (U_{CC1} = 9,9 B, U_{CC2} =-9,9B, U_{CC3} = 5,25B, U_{I} = (0,1±0,05) B)	I _{CC3}	-	16	-	16	-	16	-	18	-	18	
Входной ток низкого уровня, мА (U_{CC1} = 9,9 B, U_{CC2} = -9,9 B, U_{CC3} = 5,25 B, U_{I} = (0,1±0,05)B, U_{STROBE} =0,5 B)	I _{IL}	-	2	-	2	-	2	-	2	-	2	1
Входной ток высокого уровня, мА (U_{CC1} = 9,9 B, U_{CC2} = -9,9 B, U_{CC3} = 5,25 B, U_{I} = (0,1±0,05) B, U_{STROBE} = 2,7 B)	I _{IH}	-	50	-	50	-	50	-	100	-	100	1
Время задержки выключения, нс (U_{CC1} = 9,9 B, U_{CC2} = -9,9 B, U_{CC3} = 5,25 B, U_{REF} =100мB, U_{G8} =150мB, U_{O} =1,4B)	t _{DLH}	-	26	-	26	-	26	-	26	-	26	1

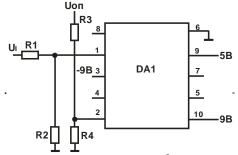
Примечания: 1 Измерения параметров, указанных в таблице, проводится для обоих компараторов.

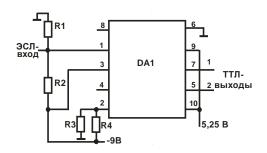

Предельные и предельно допустимые значения режимов эксплуатации

			Hop	ма			
Наименование параметра, единица измерения	Буквен- ное обозна- начение	Преде допуст реж	имый		льный ким	Время воздействия предельного режима	Приме- чание
		не менее	не более	не менее	не более		
	U _{CC1}	8,1	9,9	5	10	_	
Напряжение источника питания, В	U _{CC2}	-9,9	-8,1	-10	-7	2 часа	1
	U _{CC3}	4,75	5,25	4,5	5,26		
Синфазное входное напряжение, В	U _{IC}	-5	5	-5,1	5,1		
Входное дифференциальное напряжение, В	U _{ID}	-4	4	-4,1	4,1	2 часа	-
Входное напряжение высокого уровня (строба), В	U _{OH}	2,4	5	2,4	5	2 часа	2
Входное напряжение низкого уровня (строба), В	U _{OL}	-0,4	0,4	-0,4	0,4		
Мощность рассеивания, мВт	P _{TOT}				500*		


Примечание:

Основные схемы применения

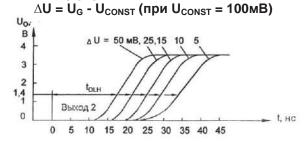

Схема включения 521CA401 в качестве компаратора напряжения

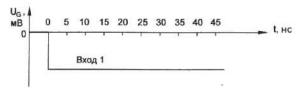

Схема включения в качестве фотодетектора

Приемник цифровых сигналов с линий

Схема преобразователя уровней ЭСЛ в ТТЛ

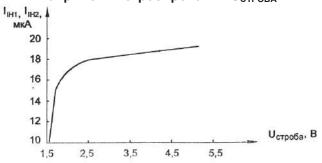
Нумерация выводов приведена для корпусов 3107.12-1 и 301.12-1;

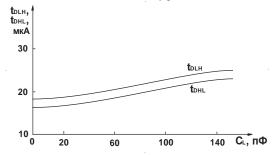

DA1 – микросхема 521CA401;


 U_{I} , $U_{O\Pi}$ – входное, опорное напряжение

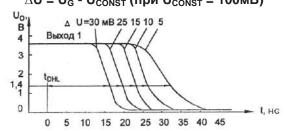
 $^{^{1}}$ *При температуре окружающей среды выше 75° С допустимая мощность рассеивания определяется по формуле: $P_{TOT} = 500 \text{ мBt} - 1/R_{Tn-c} x$ (tokp.cp - 75° C), где $R_{Tn-c} = 0.17 \, ^{\circ}$ С /мВт — тепловое сопротивление микросхем.

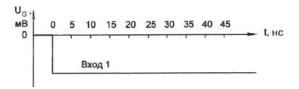
² Предельные режимы эксплуатации для изделий, начинающихся с буквы "К", не оговариваются.


Зависимость времени задержки выключения t_{DLH} от дифференциального сигнала на входе

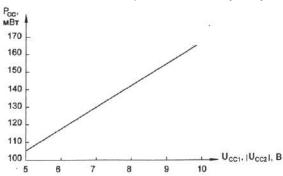


 U_0 – выходное напряжение, U_G – напряжение генератора

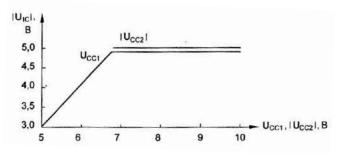

Зависимость входных токов логических входов высокого уровня I_{IH1}, I_{IH2} от напряжения стробирования U_{СТРОБА}

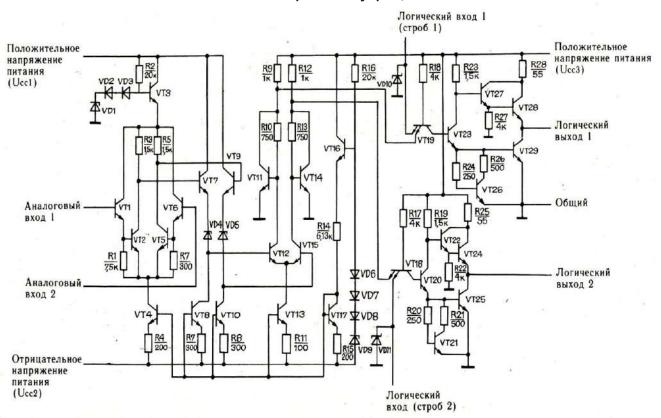


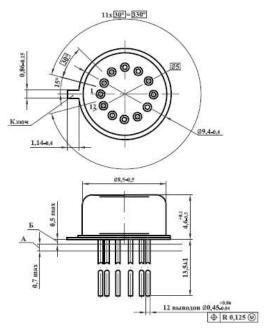
Зависимость времени задержки от емкости нагрузки

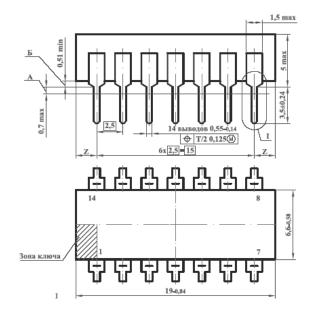


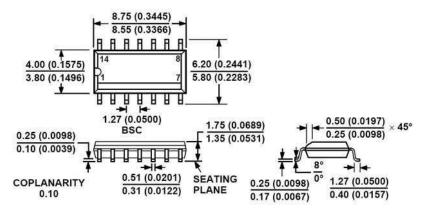
Зависимость времени задержки включения t_{DHL} от дифференциального сигнала на входе $\Delta U = U_G - U_{CONST}$ (при $U_{CONST} = 100$ мВ)




Зависимость мощности потребления P_{cc} от питающих напряжений U_{cc1} , $|U_{cc2}|$


Зависимость предельных синфазных напряжений от напряжений питания


Схема электрическая упрощенная


Габаритные чертежи используемых корпусов

Корпус 3107.12-1 В корпусе 301.12-1 дл. выводов 20±1мм

Корпус 201.14-1

Корпус типа SOIC-14 (150 Mil), размеры в мм (дюймах)