Features

- High-performance, Low-power AVR® 8-bit Microcontroller
- Advanced RISC Architecture
 - 130 Powerful Instructions Most Single-clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 16 MIPS Throughput at 16 MHz
 - On-chip 2-cycle Multiplier
- Nonvolatile Program and Data Memories
 - 8K Bytes of In-System Self-Programmable Flash Endurance: 10,000 Write/Erase Cycles
 - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
 - 512 Bytes EEPROM
 - Endurance: 100,000 Write/Erase Cycles
 - 1K Byte Internal SRAM
 - Programming Lock for Software Security
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescaler, one Compare Mode
 - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Three PWM Channels
 - 8-channel ADC in TQFP and MLF package Six Channels 10-bit Accuracy Two Channels 8-bit Accuracy
 - 6-channel ADC in PDIP package
 Four Channels 10-bit Accuracy
 Two Channels 8-bit Accuracy
 - Byte-oriented Two-wire Serial Interface
 - Programmable Serial USART
 - Master/Slave SPI Serial Interface
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated RC Oscillator
 - External and Internal Interrupt Sources
 - Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
- I/O and Packages
 - 23 Programmable I/O Lines
 - 28-lead PDIP, 32-lead TQFP, and 32-pad MLF
- Operating Voltages
 - 2.7 5.5V (ATmega8L)
 - 4.5 5.5V (ATmega8)
- Speed Grades
 - 0 8 MHz (ATmega8L)
 - 0 16 MHz (ATmega8)
- Power Consumption at 4 Mhz, 3V, 25°C
 - Active: 3.6 mA
 - Idle Mode: 1.0 mA
 - Power-down Mode: 0.5 µA

8-bit **AVR**[®] with 8K Bytes In-System Programmable Flash

ATmega8 ATmega8L

Summary

Note: This is a summary document. A complete document is available on our Web site at www.atmel.com.

Rev. 2486MS-AVR-12/03

Pin Configurations

2

Overview

The ATmega8 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega8 achieves throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed.

Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega8 provides the following features: 8K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes of EEPROM, 1K byte of SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte oriented Two-wire Serial Interface, a 6-channel ADC (eight channels in TQFP and MLF packages) where four (six) channels have 10-bit accuracy and two channels have 8-bit accuracy, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next Interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The Flash Program memory can be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip boot program running on the AVR core. The boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash Section will continue to run while the Application Flash Section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega8 is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications.

The ATmega8 AVR is supported with a full suite of program and system development tools, including C compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators, and evaluation kits.

Disclaimer Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

Pin Descriptions

vcc	Digital supply voltage.
GND	Ground.
Port B (PB7PB0) XTAL1/ XTAL2/TOSC1/TOSC2	Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.
	Depending on the clock selection fuse settings, PB6 can be used as input to the invert- ing Oscillator amplifier and input to the internal clock operating circuit.
	Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.
	If the Internal Calibrated RC Oscillator is used as chip clock source, PB76 is used as TOSC21 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.
	The various special features of Port B are elaborated in "Alternate Functions of Port B" on page 56 and "System Clock and Clock Options" on page 23.
Port C (PC5PC0)	Port C is an 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.
PC6/RESET	If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electri- cal characteristics of PC6 differ from those of the other pins of Port C.
	If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page 36. Shorter pulses are not guaranteed to generate a Reset.
	The various special features of Port C are elaborated on page 59.
Port D (PD7PD0)	Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.
	Port D also serves the functions of various special features of the ATmega8 as listed on page 61.
RESET	Reset input. A low level on this pin for longer than the minimum pulse length will gener- ate a reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page 36. Shorter pulses are not guaranteed to generate a reset.

AVCC	AVCC is the supply voltage pin for the A/D Converter, Port C (30), and ADC (76). It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter. Note that Port C (54) use digital supply voltage, V_{CC} .
AREF	AREF is the analog reference pin for the A/D Converter.
ADC76 (TQFP and MLF Package Only)	In the TQFP and MLF package, ADC76 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels.

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x3F (0x5F)	SREG	I	т	Н	S	V	N	Z	С	9
0x3E (0x5E)	SPH	_	-	_	_	_	SP10	SP9	SP8	11
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	11
0x3C (0x5C)	Reserved		•				•			
0x3B (0x5B)	GICR	INT1	INT0	-	_	-	-	IVSEL	IVCE	47, 65
0x3A (0x5A)	GIFR	INTF1	INTF0	-	-	-	-	-	-	66
0x39 (0x59)	TIMSK	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	-	TOIE0	70, 100, 120
0x38 (0x58)	TIFR	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	-	TOV0	71, 101, 120
0x37 (0x57)	SPMCR	SPMIE	RWWSB	-	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	210
0x36 (0x56)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	168
0x35 (0x55)	MCUCR	SE	SM2	SM1	SM0	ISC11	ISC10	ISC01	ISC00	31, 64
0x34 (0x54)	MCUCSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	39
0x33 (0x53)	TCCR0	-	-	-	-	-	CS02	CS01	CS00	70
0x32 (0x52)	TCNT0				Timer/Cou	nter0 (8 Bits)				70
0x31 (0x51)	OSCCAL				Oscillator Cal	ibration Register				29
0x30 (0x50)	SFIOR	-	-	-	-	ACME	PUD	PSR2	PSR10	56, 73, 121, 190
0x2F (0x4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	WGM11	WGM10	95
0x2E (0x4E)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	98
0x2D (0x4D)	TCNT1H		•	Time	er/Counter1 - Co	unter Register Hig	gh byte	•	•	99
0x2C (0x4C)	TCNT1L				er/Counter1 – Co					99
0x2B (0x4B)	OCR1AH				unter1 – Output C					99
0x2A (0x4A)	OCR1AL			Timer/Co	unter1 – Output (Compare Register	A Low byte			99
0x29 (0x49)	OCR1BH			Timer/Co	unter1 – Output C	compare Register	B High byte			99
0x28 (0x48)	OCR1BL			Timer/Co	unter1 – Output (Compare Register	B Low byte			99
0x27 (0x47)	ICR1H			Timer/0	Counter1 – Input	Capture Register	High byte			100
0x26 (0x46)	ICR1L				Counter1 – Input		* *			100
0x25 (0x45)	TCCR2	FOC2	WGM20	COM21	COM20	WGM21	CS22	CS21	CS20	115
0x24 (0x44)	TCNT2					nter2 (8 Bits)				117
0x23 (0x43)	OCR2			Tir	mer/Counter2 Ou		gister			117
0x22 (0x42)	ASSR	-	-	-	_	AS2	TCN2UB	OCR2UB	TCR2UB	117
0x21 (0x41)	WDTCR	-	-	-	WDCE	WDE	WDP2	WDP1	WDP0	41
	UBRRH	URSEL	-	_	-		UBR	R[11:8]		155
0x20 ⁽¹⁾ (0x40) ⁽¹⁾	UCSRC	URSEL	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL	153
0x1F (0x3F)	EEARH	-	-	-	-	-	-	_	EEAR8	18
0x1E (0x3E)	EEARL	EEAR7	EEAR6	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0	18
0x1D (0x3D)	EEDR		•	•	EEPROM	Data Register	•	•		18
0x1C (0x3C)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	18
0x1B (0x3B)	Reserved		•				•			
0x1A (0x3A)	Reserved									
0x19 (0x39)	Reserved									
0x18 (0x38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	63
0x17 (0x37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	63
0x16 (0x36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	63
0x15 (0x35)	PORTC	-	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	63
0x14 (0x34)	DDRC	-	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	63
0x13 (0x33)	PINC	-	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	63
0x12 (0x32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	63
0x11 (0x31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	63
0x10 (0x30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	63
0x0F (0x2F)	SPDR				SPI Da	ta Register				128
0x0E (0x2E)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	128
0x0D (0x2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	СРНА	SPR1	SPR0	126
0x0C (0x2C)	UDR					Data Register				150
0x0B (0x2B)	UCSRA	RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM	151
0x0A (0x2A)	UCSRB	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	152
0x09 (0x29)	UBRRL				USART Baud Ra					155
0x08 (0x28)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	191
0x07 (0x27)	ADMUX	REFS1	REFS0	ADLAR	_	MUX3	MUX2	MUX1	MUX0	202
0x06 (0x26)	ADCSRA	ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	204
0x05 (0x25)	ADCH					egister High byte				205
, ,	ADCL	İ				egister Low byte				205
0x04(0x24)						*				
0x04 (0x24) 0x03 (0x23)	TWDR			т	wo-wire Serial In	tertace Data Regi	ister			170

Register Summary (Continued)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x01 (0x21)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	170
0x00 (0x20)	TWBR		Two-wire Serial Interface Bit Rate Register						168	

Notes: 1. Refer to the USART description for details on how to access UBRRH and UCSRC.

2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND L	OGIC INSTRUCTIONS	8			
ADD	Rd, Rr	Add two Registers	$Rd \gets Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	$Rdh{:}Rdl \gets Rdh{:}Rdl + K$	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \gets Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \gets Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \gets Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \gets Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \gets Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \lor Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \lor K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \gets Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	$Rd \leftarrow 0x00 - Rd$	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \gets Rd \lor K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \gets Rd \bullet (0xFF -K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \gets Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow 0xFF$	None	1
MUL	Rd, Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
BRANCH INSTRUC	TIONS				
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
RCALL	k	Relative Subroutine Call	$PC \gets PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	$PC \gets Z$	None	3
RET		Subroutine Return	$PC \gets STACK$	None	4
RETI		Interrupt Return	$PC \leftarrow STACK$	1	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC \leftarrow PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC \leftarrow PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC \leftarrow PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC \leftarrow PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if $(SREG(s) = 1)$ then $PC \leftarrow PC+k + 1$	None	1 / 2
BRBC	s, k	Branch if Status Flag Cleared	if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$	None	1 / 2
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1 / 2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1 / 2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1 / 2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1 / 2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1 / 2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1 / 2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1 / 2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
	k	Branch if Less Than Zero, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1 / 2
BRLT	k	Branch if Half Carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1 / 2
BRHS			if (III = 0) there BO = BO = Ir = 1	None	1/2
	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	
BRHS	k k	Branch if Half Carry Flag Cleared Branch if T Flag Set	if (H = 0) then PC \leftarrow PC + k + 1 if (T = 1) then PC \leftarrow PC + k + 1	None	1 / 2
BRHS BRHC					
BRHS BRHC BRTS	k	Branch if T Flag Set	if $(T = 1)$ then PC \leftarrow PC + k + 1	None	1 / 2
BRHS BRHC BRTS BRTC	k k	Branch if T Flag Set Branch if T Flag Cleared	$\begin{array}{l} \mbox{if } (T=1) \mbox{ then } PC \leftarrow PC + k \ + 1 \\ \mbox{if } (T=0) \mbox{ then } PC \leftarrow PC + k \ + 1 \end{array}$	None None	1/2 1/2

DATABASEGE DEVICEDAVAROLPYNone Service RigideRol-PARol-PANoneIMOVRd, FACory Rigide WordRol-PARol-PANoneILORd, KLoad InfractaRd - KNoneILDRd, XLoad InfractaRd - KNoneILDRd, XLoad InfractaRd - CNoneILDRd, YLoad InfractaRd - CNoneILDRd, ZLoad InfractaNone <td< th=""><th>BRID</th><th>к k</th><th>Branch if Interrupt Enabled Branch if Interrupt Disabled</th><th>if $(I = 1)$ then PC \leftarrow PC + k + 1 if $(I = 0)$ then PC \leftarrow PC + k + 1</th><th>None None</th><th>1/2</th></td<>	BRID	к k	Branch if Interrupt Enabled Branch if Interrupt Disabled	if $(I = 1)$ then PC \leftarrow PC + k + 1 if $(I = 0)$ then PC \leftarrow PC + k + 1	None None	1/2
MOVNo. No. No. No. No. No. No. No. No. No.			Branch in Interrupt Disabled	If $(1=0)$ (nen FC \leftarrow FC + k + 1	None	1/2
MOVWMo. Roy Copy Sogne WorkPath InformationPath InformationNoneInformationLDRd, KLand NumberRd + KNone <td< td=""><td></td><td></td><td>Move Between Pegisters</td><td>Pd / Pr</td><td>Nono</td><td>1</td></td<>			Move Between Pegisters	Pd / Pr	Nono	1
LintPick NLoad IndicationPic + NNoneNoneLDPG XLoad Indicat and Pace Inc.Pic + N/1NoneNoneLDPG XLoad Indicat and Pace Inc.Pic + N/1 NNoneNoneLDRG XLoad Indicat and Pace Inc.Pic + N/1 NNoneNoneLDRG YLoad Indicat and Pace Inc.Pic + N/1 NNoneNoneLDRG YLoad Indicat and Pace Inc.Pic + N/1 NNoneNoneLDRG YLoad Indicat and Pace Inc.Pic + N/2 - Y.1NoneNoneLDRG 2Load Indicat and Pace Inc.Pic + D/2 - 21NoneNoneLDRG 2Load Indicat and Pace Inc.Pic + D/2 - 21NoneNoneLDRG 2Load Indicat and Pace Inc.Pic + D/2 - 21NoneNoneLDRG 2Load Indicat and Pace Inc.Pic + D/2 - 21NoneNoneLDRG 2Load Indicat and Pace Inc.Pic + D/2 - 21NoneNoneLDRG 2Load Indicat and Pace Inc.Pic + D/2 - 21NoneNoneSTXNSome IndicaPic + D/2 - NNoneNoneSTXNSome Indica and Pace Inc.Pic + D/2 - NNoneSTXNSome Indica and Pace Inc.Pic + N - 11NoneSTXNSome Indica and Pace Inc.Pic + N - 11NoneSTXNSome Indica and Pace Inc.Pic + N - 11None <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td>1</td></t<>	-					1
LDNDNDNormaNormaLDR0 X-Load indicat and Pre-Dec.R4 - XX, X-X-1, ND - XXNormaNormaLDR0 X-Load indicat and Pre-Dec.R4 - XX, X-X-1, ND - XXNormaNormaLDR0 X-Load indicat and Pre-Dec.R4 - YX, X-Y + 1NormaNormaLDR0 X-Load indicat and Pre-Dec.Y - Y1, Nd - Y1, Nd - Y1NormaNormaLDR0 X-Load indicat and Pre-Dec.Y - Y1, Nd - Y1NormaNormaLDR0 Z-Load indicat and Pre-Dec.R4 - Y2 - 10NormaNormaLDR0 Z-Load indicat and Pre-Dec.R2 - 21, ND - CDNormaNormaLDR0 Z-Load indicat and Pre-Dec.R2 - 21, ND - CDNormaNormaLDR0 Z-Load indicat and Pre-Dec.R2 - 21, ND - CDNormaNormaLDR0 Z-Load indicat and Pre-Dec.R2 - 21, ND - CDNormaNormaLDR1 Z-ND - P1NormaNormaNormaNormaLDND - P1NormaNormaNormaNormaNormaLDND - P1NormaNormaNormaNormaNormaLDND - P1NormaNormaNormaNormaNormaLDND - P1NormaNormaNormaNormaNormaLDND - P1NormaNormaNormaNormaNormaSTN, RStore InformaNormaNormaNormaNorma <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
LDNALast invict and PracingPR - (0, X + X + 1)NoneNoneLDR4, XLast invict and ProbeX - X 1, R4 + (0,0)NoneNoneLDR4, YLast invict and ProbePR - (Y, Y + Y, 1)NoneNoneLDR4, YLast invict and ProbePR - (Y, Y + Y, 1)NoneNoneLDR4, YLast invict and ProbePR - (Y, Y + Y, 1)NoneNoneLDR4, ZLast invict and ProbePR - (Y, 2)NoneNoneLDR4, ZLast invict and ProbePR - (Y, 2)NoneNoneLDR4, ZLast invict and ProbePR - (Z, 2, 2, 1)NoneNoneLDR4, ZLast invict and ProbePR - (Z, 2)NoneNoneNoneLDR4, ZLast invict and ProbePR - (Z, 2, 2, 2, 1)NoneNoneNoneLDR4, ZLast invict and ProbePR - (Z, 2, 2, 2, 1)NoneNoneNoneLDR4, ZLast invict and ProbePR - (Z, 2, 2, 2, 1)NoneNoneNoneLDR4, ZLast invict and ProbePR - (Y, 1)NoneNoneNoneNoneSTX, BrStore Inford and ProbeY - (Y, 1)PRNoneNoneNoneSTX, BrStore Inford and ProbeY - (Y, 1)PRNoneNoneNoneSTX, BrStore Inford and ProbeY - (Y, 1)PRNoneNoneNoneSTX, BrStore Inford and Probe <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>						1
LDRdLoad Indired and Pre-Des.X = X + 1, Rd = (3)Nee (3)LDRd YLoad Indired and Pas-Inc.Rd = (V, Y + Y + 1)NoteNeeLDRd YLoad Indired and Pas-Des.Y = Y + 1, Rd = (Y)NeeNeeLD0Rd Y_qLoad Indired and Pas-Des.Y = Y + 1, Rd = (Y)NeeNeeLD0Rd Y_qLoad Indired the DepartmentRd = (Y, Q)NeeNeeLD0Rd ZLoad Indired the DepartmentRd = (Z), Z = Z + 1NeeNeeLD0Rd ZLoad Indired the DepartmentRd = (Z), Z = Z + 1NeeNeeLD0Rd ZLoad Indired the DepartmentRd = (Z), Q = QNeeNeeLD1Rd ZLoad Indired the DepartmentRd = (Z), Q = QNeeNeeLD2Rd ZLoad Indired the DepartmentRd = (Z), Q = QNeeNeeLD3Rd ALoad Dref the SAMRd = (X), C = QNeeNeeNeeSTX, RfStore InfriedM Per SANeeNeeNeeNeeSTY, RfStore Infried and Per Des.X = X + 1, (M) = RNeeNeeNeeSTY, RfStore Infried and Per Des.X = X + 1, (M) = RNeeNeeNeeSTY, RfStore Infried and Per Des.X = X + 1, (M) = RNeeNeeNeeSTY, RfStore Infried and Per Des.X = X + 1, (M) = RNeeNeeNeeSTY, RfStore Infried and Per Des.X = X + 1, (M) =						2
LD Rd γ Loga Indicat and Poole. Rd - (γ) - (γ) None In LD Rd γ+ Loga Indicat and Poole. Y + γ + 1, Rd - (γ) None In LD Rd γ-q Loga Indicat and Poole. Y + γ + 1, Rd - (γ) None In LD Rd γ-q Loga Indicat and Poole. Rd - (Z) None In LD Rd Z- Loga Indicat and Poole. Rd - (Z) None In LD Rd Z- Loga Indicat and Poole. Rd - (Z) None In LD Rd Z- Loga Indicat and Poole. Rd - (Z) None In LD Rd Z- Loga Indicat and Poole. X = (X - Z) None In ST X, R Store Indicat and Poole. X = X + (X + 1) None In ST X, R Store Indicat and Poole. X = X + (X + 1) None In ST X, R Store Indicat and Poole. X = X + (X + 1) None In ST Y, R Store Indicat and Poole. X =				· · · · ·		2
LDRd. Y.Load inforce and Pasiho.Rd. Y. Y. J. Hen (Y)NoneNoneLD0Rd. Y.Load inforce and Poolon.Y L-Y. J. Ren (Y)NoneNoneNoneLD0Rd. Y.Load inforce and Poolon.Rd. (Y, -g)NoneNoneNoneNoneLDRd. Z.Load inforce and Poolon.Rd. (Z, 2, -Z, 1)None						2
LDRdYLog Indrex Mo Pre-Des.YYNeeNeeLDRdLog Indrex Mo DegacementRd - (2)NeeNeeNeeLDRdZLog Indrex Mo DegacementRd - (2)NeeNeeLDRdZLog Indrex Mo DegacementRd - (2)NeeNeeLDRdLog Indrex Mo DegacementRd - (2)NeeNeeSTX, RrStore Indrex Mo DegacementRd - (2)NeeNeeSTX, RrStore Indrex Mo Degacement(2) - (R, X - X + 1NeeNeeSTX, RrStore Indrex Mo Degacement(2) - (R, X - X + 1)NeeNeeSTY, RrStore Indrex Mo PeoLeY - Y - (1) - (FrNeeNeeSTY, RrStore Indrex Mo PeoLe(2) - (FrNeeNeeSTZ, RrStore Indrex Mo Peo		Rd, Y	Load Indirect		None	2
LDD Bd.Y = Lad Individ xm Digitations Bd = (r), 2 = (r), 2 = 2.1 None None LD Bd,Z Lada Individ xm Pagtene, Bd + (r), Z = Z.1 None None LD Bd,Z Lada Individ xm Pagtene, Z = Z.1 Bd + (r), None None LDD Bd,Z Lada Individ xm Digatomat Bd + (r), 2 = Z.1 None None LDS Bd,X Lada Orient two Digatomat Bd + (r), 1 Bd + (r), None None ST X, Rr Stera Individ and Preden. No + K × 1, No + T None None ST X, Rr Stera Individ and Preden. N + K × 1, No + T None None ST X, Rr Stera Individ and Preden. N + K × 1, No + T None None ST X, Rr Stera Individ and Preden. N + K × 1, No + T None None ST X, Rr Stera Individ and Preden. N + e, N + N + 1 None None ST X, Rr Stera Individ and Preden. N + e, N + 1 None None ST		Rd, Y+		$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD βd.2 Land individ modelship βd - (D) None None LD βd.2 Land individ and Peshbe. Z - 2.1. βd - (D) None None LD βd.2 Land individ and Peshbe. Z - 2.1. βd - (D) None None LDS βd.4 Land individ and Peshbe. A - (A) None None LDS Kd.K Land individ and Peshbe. A - (A) None None ST X.R Store individ and Peshbe. (A) - (R) None None ST X.R Store individ and Peshbe. X - X / (X) - (R) None None ST Y.R Store individ and Peshbe. (Y) - (R) - Y + 1.1 None None ST Y.R Store individ and Peshbe. (Y) - (R) - Y + 1.1 None None ST Y.R Store individ and Peshbe. (Y) - (R) - Y + 1.1 None None ST Z.R Store individ and Peshbe. (Y) - (R) - Y + 1.1 None None ST Z.R Store in	LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDRd.2.*Load Indiced and Pen-Ben.Rd $-(D_1 L^2 - L^2 - 1)$ NomeNomeLD0Rd.2.*Load Indiced with DeglocomentRd $-(D_1 - Q_1)$ NomeNomeLD0Rd.2.*Load Direct from SRMRd $-(D_1 - Q_1)$ NomeNomeSTX.4.Stepe Indirect(D_1 - RT, X + 1)NomeNomeNomeSTX.4.Stepe Indirect(D_1 - RT, X + 1)NomeNomeNomeSTY.4.Stepe Indirect and Pen-Box.X + X + 1, (Q) - RTNomeNomeSTY.4.Stepe Indirect and Pen-Box.Y + Y + 1, (Y) - RTNomeNomeSTY.4.Stepe Indirect and Pen-Box.Y + Y + 1, (Y) - RTNomeNomeSTY.4.Stepe Indirect and Pen-Box.Y + Y + 1, (Y) - RTNomeNomeSTY.4.Stepe Indirect and Pen-Box.Y + Y + 1, (Y) - RTNomeNomeSTZ.4.Stepe Indirect and Pen-Box.Z + Z + 1NomeNomeSTZ.4.Stepe Indirect and Pen-Box.Z + Z + 1, (Q - RTNomeSTZ.4.Stepe Indirect and Pen-Box.Z + Z + 1, (Q - RTNomeSTZ.4.Stepe Indirect and Pen-Box.Z + Z + 1, (Q - RTNomeSTZ.4.<	LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \gets (Y + q)$	None	2
LDRd.2Load indiced and Pro-Boc.Z-2-1, Rd - C)NoneNoneLDSRd.4, Load Direct Mon SPAMRd - (-q)NoneNoneNoneLDSRd.4, Load Direct Mon SPAMRd - (-q)NoneNoneNoneSTX, FirStore Indirect and Pro-Boc.(X) - Fir, X - X - 1.0NoneNoneSTX, RrStore Indirect and Pro-Boc.X + X, X (X) - firNoneNoneNoneSTY, FirStore Indirect and Pro-Boc.X + X, 1 (X) - firNoneNoneNoneSTY, FirStore Indirect and Pro-Boc.Y + Y, Y, Y + 1NoneNoneNoneSTY, FirStore Indirect and Pro-Boc.(Y + Y, Y, Y) - firNoneNoneNoneSTY, FirStore Indirect and Pro-Boc.(Y + Y, Y, Y) - firNoneNoneNoneSTZ, FirStore Indirect and Pool:(Z) - FirNoneNoneNoneST	LD	Rd, Z	Load Indirect	$Rd \gets (Z)$	None	2
LDDHd Z_1 qLoad Indices with DisplacementHd $-\sqrt{2}$, q)NoneHdSTX, FrStere Indiced and Post ho. $(X) - FrMoreNoneNoneSTX, RStere Indiced and Post ho.(X) - FrMoreNoneNoneSTX, RStere Indiced and Post ho.(X) - FrMoreNoneNoneSTY, RStere Indiced and Post ho.(Y) - FrNoneNoneNoneNoneSTY, RStere Indiced and Post ho.(Y) - FrY + Y + 11None$	LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \gets (Z), Z \gets Z{+}1$	None	2
LDSRd, rLoad Degition SRAMRd, r, r)NoneNoneSTX, RrStore Indired and Polit Inc. $(2) \leftarrow Pr, X \leftarrow X + 1$ NoneNoneNoneSTX, RrStore Indired and Polit Inc. $(2) \leftarrow Pr, X \leftarrow X + 1$ NoneNoneNoneSTY, RrStore Indired and Polit Inc. $(1) \leftarrow Pr, X \leftarrow X + 1$ NoneNoneNoneSTY, RrStore Indired and Polit Inc. $(1) \leftarrow Pr, X \leftarrow Y + 1$ NoneNoneNoneSTY, RrStore Indired and Polit Inc. $(1) \leftarrow Pr, X \leftarrow Y + 1$ NoneNoneNoneSTY, RrStore Indired and Polit Inc. $(2) \leftarrow Pr, X \leftarrow Y + 1$ NoneNoneNoneSTZ, RrStore Indired and Polit Inc. $(2) \leftarrow Pr, Z \leftarrow 1 + 1$ NoneNoneNoneSTZ, RrStore Indired and Polit Inc. $(2) \leftarrow Pr, Z \leftarrow 1 + 1$ NoneNoneNoneSTZ, RrStore Indired and Polit Inc. $(2) \leftarrow Pr, Z \leftarrow 1 + 1$ NoneNoneNoneSTZ, RrStore Indired and Polit Inc. $(2) \leftarrow Pr, Z \leftarrow 1 + 1$ NoneNoneNoneSTZ, RrStore Indired and Polit Inc. $(2) \leftarrow Pr, Z \leftarrow 1 + 1$ NoneNoneNoneSTZ, RrStore Indired and Polit Inc. $(2) \leftarrow Pr, Z \leftarrow 1 + 1$ NoneNoneNoneSTZ, RrStore Indired and Polit Inc. $(2) \leftarrow Pr, Z \leftarrow 1 + 1$ NoneNoneNoneSTZ, RrStore Indired and Polit Inc. $(2) \leftarrow Pr, Z \leftarrow 1 + 1$ None <t< td=""><td>LD</td><td>Rd, -Z</td><td>Load Indirect and Pre-Dec.</td><td>$Z \leftarrow Z - 1, Rd \leftarrow (Z)$</td><td>None</td><td>2</td></t<>	LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
STX, R'Stree Induced and Peat-Inc. $(\chi_1 - F_1 \times - X + 1$ NoneNoneSTX, RStree Induced and Peat-Doc. $(\chi_1 - F_1 \times - X + 1, (\chi) - R^1$ NoneISTY, R'Stree Induced and Peat-Doc. $(\chi_1 - F_1 \times - X + 1, (\chi) - R^1$ NoneISTY, R'Stree Induced and Peat-Doc. $(Y_1 - F_1 \times - Y + 1)$ NoneISTY, R'Stree Induced and Peat-Doc. $(Y_1 - F_1 \times - Y + 1)$ NoneISTZ, R'Stree Induced and Peat-Doc. $(Y_1 - F_1 \times - Y + 1)$ NoneISTZ, R'Store Induced and Peat-Doc. $(Z_1 - F_1 - F_1)$ NoneISTZ, R'Store Induced and Peat-Doc. $(Z_1 - F_1 - Z + 1)$ NoneISTZ, R'Store Induced and Peat-Doc. $(Z_1 - F_1 - Z + 1)$ NoneISTZ, R'Store Induced and Peat-Doc. $(Z_1 - F_1 - R)$ NoneISTZ, R'Store Induced and Peat-Doc. $(Z_1 - F_1 - R)$ NoneISTZ, R'Store Induced and Peat-Doc. $(Z_1 - F_1 - R)$ NoneISTZ, R'Store Induced and Peat-Doc. $(Z_1 - F_1 - R)$ NoneISTZ, R'Store Induced and Peat-Doc. $(Z_1 - F_1 - R)$ NoneISTZ, R'Store Induced and Peat-Doc. $(Z_1 - F_1 - R)$ NoneISTZ, R'Store Induced and Peat-Doc. $(Z_1 - F_1 - R)$ NoneISTStore Induced and Peat-Doc.Store Induc	LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
ST X, Rr Store Indirect and Pact-hac. (λ) – Rr None I ST X, Rr Store Indirect and Pact-hac. X – X-1, (λ) – Rr None I ST Y, Rr Store Indirect and Pact-hac. Y – Rr None I ST Y, Rr Store Indirect and Pact-hac. Y – Rr None I ST Y, Rr Store Indirect and Pact-hac. Y + Pr None I ST Y, Rr Store Indirect and Pact-hac. Y + 2, 1, (λ) – Rr None I ST Y, Rr Store Indirect and Pact-hac. (2) – Rr, Z - 2, 1 None I ST Z, Rr Store Indirect and Pact-hac. (2) – Rr None I ST Z, Rr Store Indirect and Pact-hac. (2) – Rr None I ST Z, Rr Store Indirect and Pact-hac. (2) – Rr None I ST Z, Rr Store Indirect and Pact-hac. (2) – Rr None I ST Z, Rr Store Indirect and Pact-hac. <td>LDS</td> <td>Rd, k</td> <td>Load Direct from SRAM</td> <td>$Rd \leftarrow (k)$</td> <td>None</td> <td>2</td>	LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST X, fr Stere indirect and Pre-Doc. X - X + 1, (X) - Br None None ST Y, R Stere indirect and Pre-Doc. X - X + 1, (X) - Br None None ST Y, R Stere indirect and Pre-Inc. (Y) - R, Y - Y + 1, (Y) - R None None ST Y, R Stere indirect and Pre-Inc. (Y - Y + Y + 1, (Y) - R' None None ST Y, R Stere indirect and Pre-Doc. (Y - Y + Y + 1, (Y) - R' None None ST Y, R Stere indirect and Pre-Doc. (Z - R' None None ST Z, R' Stere indirect and Pre-Doc. (Z - Q + R' None None ST Z, R' Stere indirect and Pre-Doc. (Z - Q + R' None None ST Z, R' Stere indirect and Pre-Doc. (Z - Q + R' None None ST X, R' Stere indirect and Pre-Doc. (Z - Q + R' None None ST X, R' Stere indirect and Pre-Doc. (Z - Q + R' None None	ST					2
ST ····································	ST		Store Indirect and Post-Inc.		None	2
ST Y.r. for Store indirect and Pet-Inc. (Y) - Rr. Y - Y + 1. Nome Nome ST Y.r. for Store indirect and Pet-Inc. (Y + q) - Rr. Nome Nome STD Y.r. for Store indirect and Pet-Doc. (Y + q) - Rr. Nome Nome STD Z. Rr Store indirect and Pet-Doc. (Z - Fr. Nome Nome ST Z., for Store indirect and Pet-Doc. (Z - q) - Rr. Nome Nome STD Z-, q, for Store indirect and Pet-Doc. (Z - q) - Rr. Nome Nome STS K, R Store indirect with Displacement (Z - q) - Rr. Nome Nome LPM R. d. Z Load Program Memory Rd - (Z) Nome Nome SPM - Store Program Memory Rd - (Z) Nome Nome SPM - Store Program Memory Rd - (Z) Nome Nome SPM - Store Program Memory Rd - (Z) Nome Nome SPM Rd Z Nome <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td>						2
ST Y, βr Store indired and Pool-Re. Y + Y + 1, (Y) - βr None None STO Y, dg, Rr Store indired and Pool-Re. Y + Y + 1, (Y) - βr None None ST Z, hr Store indired and Pool-Re. (Z) - βr, Z + Z + 1. None None ST Z, hr Store indired and Pool-Re. (Z + a) - Fr None None ST Z, hr Store indired and Pool-Re. (Z + a) - Fr None None ST Z, fr Store indired and Pool-Re. (Z + a) - Fr None None ST Z, fr Store indired and Pool-Re. (Z + a) - Fr None None ST Z, fr Store indired and Pool-Re. (Z + a) - Fr None None ST Z, fr Store indired and Pool-Re. (Z + a) - Fr None None ST Load Program Memory Rd + [Z None None None PM Rd Load Program Memory [Z - Fr]: A None None Store indine on Store indine A						2
ST Y, P, R' Store Indiced and Pro-Dec. $Y \leftarrow Y, (y) \leftarrow Pr$ NoneNoneSTD $Y \leftarrow B, R'$ Store Indiced with Displacement $(2) \leftarrow Pr$ NoneNoneSTZ, RrStore Indiced and Pools. $(2) \leftarrow Pr$, $Z \leftarrow Z + 1$ NoneNoneSTZ, RrStore Indiced and Pools. $Z \leftarrow Z + 1, (Z) \leftarrow Pr$ NoneNoneSTDZ, RrStore Indicet and Pools. $Z \leftarrow Z + 1, (Z) \leftarrow Pr$ NoneNoneSTSK, RrStore Indicet and Pools. $Z \leftarrow Z + 1, (Z) \leftarrow Pr$ NoneNoneUPMLad Program MemoryB($-LZ$)NoneNoneNoneLPMRd, Z.Load Program MemoryB($-LZ$)NoneNoneSPMStore Program MemoryB($-LZ$)NoneNoneNoneSPMStore Program MemoryB($-LZ$)NoneNoneNonePMRd, PIn PortRd $-P$ NoneNoneNoneOUTP, RrOut PortPo - RrNoneNoneNonePDRdPog Register from StackRd $-P$ NoneNoneNoneDITAN DITTSTETNUSTUTSUTUSPA)NoneNoneNoneNoneSIRP,bStart Init O RegisterUO(P,b) -1 NoneNoneSIRP,bClass Bith In O RegisterUO(P,b) -0 NoneNoneSIRP,bClass Bith In O RegisterUO(P,b) -0 NoneNoneSIRP,bClass Bith In O RegisterRd(n) $-Rd(n), Rd(n), -Rd(n)$						2
STD Yαβr Size Indirect with Displacement (Y + α) - far None None ST Z, Rr Size Indirect and Postinc. (Z) + Rr, Z + Z + 1 None None ST Z, Rr Size Indirect and Postinc. (Z) + Rr, Z + Z + 1 None None STD Z, Rr Size Indirect with Displacement (Z + a) - Rr None None STD Lag Morean Memory R0 + (Z) - Rr None None None UPM A. Load Program Memory R0 + (Z) - Z + 31 None None None LPM Rd, Z Load Program Memory R0 + (Z) - Z + 21 None None SM Size Program Memory R0 + (Z) - C + Rr None None None NM Rd, P In Port Rd + (Z) - Rr None None None NM Rd, P None Size Program Memory Rd + C + Rr None None NUT P, Rr Out Port Rd + STACK None None NUT P, Rr </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td>						2
STZ.hStore indirect $(2) + fr. Z - fr.$ NoneSTZ.hStore indirect and Pre-Dec. $Z + Z - 1$, $(Z) + Fr. Z - Z + 1$ NoneSTZ.RStore indirect and Pre-Dec. $Z + Z - 1$, $(Z) - Fr.$ NoneSTDZre, RrStore indirect and Pre-Dec. $Z + Z - 1$, $(Z) - Fr.$ NoneSTDZre, RrStore indirect and Pre-Dec. $Z + Z - 1$, $(Z) - Fr.$ NoneSTSk. RrStore indirect and Pre-Dec. $Z + Z - 1$, $(Z) - Fr.$ NoneLPMLoad Program MemoryR0 - (Z) NoneR0LPMRd. ZLoad Program MemoryRd + (Z) NoneLPMRd, ZLoad Program Memory and Post-IncRd + (Z) NoneSMStore Program Memory and Post-IncRd + (Z) NoneRdSMNo.PStore Program Memory $(Z) + E1:80$ NoneRdOUTP, RrOut PortRd - PNoneRdPUSHRdPog Ragister from StackRd + PNoneRdPDPRdPog Ragister from StackRd + STACKNoneRdBIT AND BT-TEST WISTHUCTIONSSet Bit in UC RagisterUO(P,b) - 1NoneNoneCBLP.bSet Bit in UC RagisterUO(P,b) - 0Z.C.N.VRdCBLRdLogical Shift RightRd(n+1) - Rd(n+1), Rd(n) - 0Z.C.N.VLS.N.VCBLRdRdate Right Through CarryRd(n+1) - Rd(n+1), Rd(n), C-Rd(n)Z.C.N.VLS.N.VRORRdArithm						2
STZ, RrStore indirect and Pre-Dec. $(2) - Pr 2 - 1. (2) - Fr.NoneNoneSTZ, RrStore indirect with Displacement(2 + 2) - Fr.NoneISTDZ+q. RrStore indirect with Displacement(2 + 1) - Fr.NoneISTSK. RrStore Direct to SHAM(0) - Fr.NoneISTMLoad Program MemoryR0 - (2)NoneILPMFd.ZLoad Program MemoryRd - (2) - 2 - 1.1NoneILPMRd.ZLoad Program Memory and Post-IncRd - (2) - 2 - 2.1NoneISPMRd ZLoad Program Memory(2) - 61:R0NoneIOUTP. RrOut FortRd - PNoneIPUSHRrOut FortRd - PNoneIPDFRdPort FortStack FortNoneIPDRRdPort FortNoneIIPDRRdPort FortNoneIIPDRRdPort FortNoneIIStackStack FortNoneIIStackStack FortNoneIIStackRdLogical Shift RightRd(n) + Ad(n1), Rd(n) - 0Z, C, N, VLSLRdLogical Shift RightRd(n) + Ad(n1), Rd(n) - 0Z, C, N, VIRDRRdLogical Shift RightRd(n) + Rd(n1), Rd(n) - 0Z, C, N, VIRDRRdLogical Shift RightRd(n) + Rd(n1), Rd(n) - 0$						2
STZ. RrStore Indirect and Pre-Dec.Z 2. 1, (2) \leftarrow PrNoneSTDZ. 4, (PrStore Indirect with Displacement(Z + q) \leftarrow PrNoneNoneSTSK. RrStore Direct to SRAM(K) \leftarrow PrNoneNoneLPMMLoad Program MemoryR0 \leftarrow (Z)NoneNoneLPMRd. ZLoad Program Memory and Posl-IncRd \leftarrow (Z), Z \leftarrow Z-1NoneNoneSPMStore Program Memory and Posl-IncRd \leftarrow (Z), Z \leftarrow Z-1NoneNoneSPMStore Program Memory and Posl-IncRd \leftarrow (Z), Z \leftarrow Z-1NoneNoneOUTP, RrOut PortRd \leftarrow PNoneNoneOUTP, RrOut PortRd \leftarrow PNoneNonePDFRdPop Register on StackSTACK \leftarrow PrNonePDFRdPop Register from StackRd \leftarrow STACKNoneSIT AND BIT-EST-WISTHUCTONSStat Bit in 10 Register10(P, B) \leftarrow 1NoneSITRdLogical Shift RightRd(n-1) \leftarrow Rd(n), Pd(n) \leftarrow 0Z.C.N.VSIRRdLogical Shift RightRd(n) \leftarrow Rd(n-1) \leftarrow Rd(n), Pd(n), Pd(n) \leftarrow 0Z.C.N.VLSLRdRdLogical Shift RightRd(n) \leftarrow Rd(n, A, Rd, Z), Pd(n) \leftarrow 0Z.C.N.VKRARdRdat Right Through CarryRd(n) \leftarrow Rd(n, A, Rd, Z), Pd(n) \leftarrow 0Z.C.N.VKRARdRdat Right Through CarryRd(n) \leftarrow Rd(n, A, Rd, Z), Pd(n) \leftarrow 0Z.C.N.VASRRdAntimetic Shift RightRd(n) \leftarrow Rd(n, A						
STDZ-q, RrStore Induced with Displacement $(Z, Q) \leftarrow Pr$ NoneNoneSTSi, K, RrStore Direct to SRAM(k) \leftarrow RrNoneNoneLPMLoad Program MemoryR0 \leftarrow (Z)NoneNoneLPMR0, ZLoad Program MemoryR0 \leftarrow (Z) \leftarrow 2-2-1NoneNoneLPMR0, ZLoad Program Memory(Z) \leftarrow R1:R0NoneNoneSPM-Store Program Memory(Z) \leftarrow R1:R0NoneNoneINRd, PIn PortRd \leftarrow PNoneNoneOUTP, RrOut PortP \leftarrow RrNoneNonePUSHRrPush Register on StackSTACKNoneNonePDPRdPog Rogister from StackSTACKNoneNoneEIT AND BIT-TEST INSTRUCTIONS-NoneNoneNoneNoneSBIP.bClear Bit In I/O RegisterI/O(P,b) \leftarrow 1NoneNoneLSLRdLogical Shift EiftRd(n) \leftarrow Rd(n) \leftarrow Rd(n) \leftarrow Rd(n)Z.C.N.VNoneLSLRdLogical Shift EiftRd(n) \leftarrow Rd(n) \leftarrow Rd(n) \leftarrow Rd(n)Z.C.N.VNoneROLRdRd Rd Right Through CarryRd(n) \leftarrow Rd(n) \leftarrow Rd(n)Z.C.N.VNoneSMAPRdAnthmedic Shift RightRd(n) \leftarrow Rd(n) \leftarrow Rd(n) \leftarrow Rd(n)C.N.VSMAPRdAnthmedic Shift RightRd(n) \leftarrow Rd(n) \leftarrow Rd(n) \leftarrow Rd(n)Z.C.N.VSMAPRdAnthmedic Shift RightRd(n) \leftarrow Rd(n) \leftarrow Rd(n) \leftarrow Rd(n)Z.C.N						2
STSk, \mathbf{R} Store Direct to SRAM(h) - \mathbf{R} NoneNoneLPMLLoad Program MemoryR0 (2)NoneNoneLPMRd, ZLoad Program Memory and Post-IncRd (2, Z - Z + 1)NoneNoneSTMStore Program Memory and Post-IncRd (2, Z - Z + 1)NoneNoneNoneNRd, PIn PortRd PNoneNoneNoneNoneOUTP, RrOut PortP - RrNoneNoneNoneNonePUSHRrPog Register rom StackSTACK - RrNoneNoneNonePDRdPog Register rom StackSTACK - RrNoneNoneNoneDIT AUD ETT-STNSTNUCTOSTSet Blin IO RegisterIO(P) + -1NoneNoneNoneCBIP.bClear Blin IO RegisterIO(P) + -0NoneNoneNoneLSLRdLogical Shift LdftRd(n-1) - Rd(n), Rd(0) - 0Z.C.N.VISLSLRdLogical Shift EightRd(n) - Rd(n-1), Rd(7) - 0Z.C.N.VISROLRdRotate Right Through CarryRd(n) - Rd(n-1), Rd(7) - 0Z.C.N.VISSWAPRdArbiter Blight RightRd(n) - Rd(n-1), Rd(7) - 0Z.C.N.VISSWAPRdArbiter Shift RightRd(n) - Rd(n-1), Rd(7) - 0Z.C.N.VISSWAPRdArbiter Shift RightRd(n) - Rd(n-1), Rd(7) - 0Z.C.N.VISSWAPRdArbiter Shift RightRd(n) - Rd(n-1), Rd(7) - 0						2
LPMnoLoad Program Memory $R0 - (2)$ NoneILPMRd, ZLoad Program Memory and Post-Inco $Rd - (2)$ NoneNoneILPMRd, ZLoad Program Memory and Post-Inco $Rd - (2)$, Z - Z - Z - Z - Z - Z - Z - Z - Z - Z			·			2
LPMRd, ZLoad Program Memory and Post-IncRd ← (2), Z ← Z1NoneILPMRd, ZStore Program Memory and Post-IncRd ← (2), Z ← Z1NoneNoneISPMStore Program Memory and Post-IncRd ← (2), Z ← Z1NoneNoneIINRd, PIn PortRd ← PNoneIIOUTP, RrOut PortRd ← PNoneIPDFRdPoo Register from StackSTACK ← RrNoneIPOPRdPoo Register from StackSTACK ← RrNoneISBI TAVD SITTEST/FUTSet Bit in I/O RegisterI/O(P,b) ← 1NoneICBIP,bSet Bit in I/O RegisterI/O(P,b) ← 1NoneICBIRdLogical Shift HaptRd(n) ← Rd(n, Hapt), Rd(n) ← 0Z,C,N/IRANRdLogical Shift RightRd(n) ← Rd(n, Hapt), Rd(n) ← 0Z,C,N/IRORRdRotate Right Through CarryRd(n) ← Rd(n+1), C-Rd(n)Z,C,N/IRARRdArithmeic Shift RightRd(n) ← Rd(n+1), C-Rd(n)Z,C,N/ISWAPRdSwap NiblesRd(n) ← Rd(n+1), C-Rd(n)Z,C,N/<		k, Rr				2
LPMRd, Z+Lad Program Memory and Post-IncRd \leftarrow (2, $2 \leftarrow$ Z-1NoneIncSPMStore Program Memory(2) \leftarrow R1:R0NoneISPMRd \leftarrow PNoneRd \leftarrow PNoneIOUTP, RrOut PortRd \leftarrow PNoneIPUSHRrPush Register on StackP \leftarrow RrNoneIPOPRdPoo Register from StackRd \leftarrow STACK \leftarrow RrNoneIBIT AND BIT-TEST INSTRUCTIONSSELP.b.Clear Bit in I/O RegisterI/O(P,b) \leftarrow 0NoneICBIP,bClear Bit in I/O RegisterI/O(P,b) \leftarrow 0NoneILSRRdLogical Shift RightRd(n) \leftarrow Rd(n+1), \leftarrow Rd(n), C, C, Rd(n) \leftarrow Rd(r)Z, C, N,VIROLRdRotate Idit Through CarryRd(n) \leftarrow Rd(n+1), C-Rd(n)Z, C, N,VIRORRdAntate Right Through CarryRd(n) \leftarrow Rd(n-1), Rd(n), C, Rd(n)Z, C, N,VISWAPRdSwap NibbiesRd(s, 0) \leftarrow Rd(r, 4), Rd(3, 0)NoneISWAPRdSwap NibbiesRd(s, 0) \leftarrow Rd(r, 4), Rd(3, 0)NoneISWAPRdSwap NibbiesRd(s, 0) \leftarrow Rd(r, 4), Rd(3, 0)NoneISECSFlag CelarSEE(G) \leftarrow 0SEE(G)ISECSet CarryC \leftarrow 0CCICLClear CarryC \leftarrow 0NIISECSet Register FlagN \leftarrow 0NIISEC<						3
SPMStore Program Memory $(Z) \leftarrow R1:R0$ NoneNoneINRd, PIn PortRd \leftarrow PNoneNoneOUTP, RrOut PortP \leftarrow RrNonePPUSHRrPush Register on StackSTACK \leftarrow RrNonePPOPRdPop Register from StackSTACK \leftarrow RrNonePBIT AND BIT-TEST INSTRUCTIONSRd \leftarrow STACKNonePSBIP.bSet Bit in UO Register $UO(P,b) \leftarrow 0$ NoneRCBIP.bClear Bit in UO Register $UO(P,b) \leftarrow 0$ NoneRLSLRdLogical Shift RightRd(n+1) \leftarrow Rd(n), Rd(0) $\leftarrow 0$ Z,C,N,VIROLRdRolate Left Through CarryRd(0) \leftarrow Rd(n+1), Rd(7) $\leftarrow 0$ Z,C,N,VIRORRdRd atta Edit Through CarryRd(0) \leftarrow Rd(n+1), nol,0), C=Rd(7)Z,C,N,VIRORRdAntimetic Shift RightRd(1) \leftarrow Rd(n+1), no6Z,C,N,VISWAPRdAntimetic Shift RightRd(2) \leftarrow Rd(n+1), no6Z,C,N,VIRGSet Specific ASREG(s) \leftarrow 1SREG(s)IBSTsFlag SetSREG(s)SREG(s)IBSTsFlag SetSREG(s)ISREG(s)IBCLRsFlag SetSREG(s)ISREG(s)IBCLSet CarryC \leftarrow 0C \leftarrow 0CICLSet CarryC \leftarrow 0C \leftarrow 0IISECSet Segue		-	• •		None	3
NRd, PIn PortRd \leftarrow PNoneOUTP, RrOut PortP \leftarrow RrNonePPUSHRrPush Registor on StackSTACK \leftarrow RrNonePOPRdPop Register from StackRd \leftarrow STACKNoneBIT AND BIT-TEST INSTRUCTIONSStatistic RegisterI/O(P,b) \leftarrow 1NoneCBIP,bSet Bit in I/O RegisterI/O(P,b) \leftarrow 1NoneCBIP,bSet Bit in I/O RegisterI/O(P,b) \leftarrow 1NoneCBIP,bClear Bit in I/O RegisterI/O(P,b) \leftarrow 1NoneLSLRdLogical Shift IghtRd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0Z,C,N,VLSRRdLogical Shift IghtRd(n) \leftarrow Rd(n+1, Rd(r) \leftarrow 0Z,C,N,VRORRdRotate Hight Through CarryRd(D) \leftarrow Rd(n+1) \leftarrow Rd(n), C,C,Rd(0)Z,C,N,VRORRdRotate Right Through CarryRd(D) \leftarrow Rd(n+1) \leftarrow Rd(n), C,C,Rd(0)Z,C,N,VSWAPRdSwap NibblesRd(3, O) \leftarrow Rd(r,1) \rightarrow Rd(3, O)NoneBSETsFiag SetSREG(s) \leftarrow 1SREG(s)BCLRsFiag ClearSREG(s) \leftarrow 1SREG(s)BCLsFilag ClearSREG(s) \leftarrow 1NoneSECSet CarryC \leftarrow 1C1CLSet CarryC \leftarrow 0C2SENAd, bBit Ioad from To RegisterN \leftarrow 1N \leftarrow 1SELSet Zeor FlagX \leftarrow 1C2SELClear CarryC \leftarrow 0C </td <td>LPM</td> <td>Rd, Z+</td> <td>Load Program Memory and Post-Inc</td> <td>$Rd \leftarrow (Z), Z \leftarrow Z+1$</td> <td>None</td> <td>3</td>	LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
OUTP, RrOut PortP \leftarrow ArNonePPUSHRrPush Register on StackSTACK \leftarrow RrNonePPOPRdPop Register from StackRd \leftarrow STACKNonePBITPubSet Bit in VO RegisterVO(P, b) \leftarrow 1NoneCCBIP,bSet Bit in VO RegisterVO(P, b) \leftarrow 0Z,C,N,VLCBIP,bCear Bit in VO RegisterVO(P, b) \leftarrow 0Z,C,N,VLLSLRdLogical Shift RightRd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0Z,C,N,VLRORRdRotate Right Through CarryRd(7) \leftarrow C,Rd(n+1), Rd(n), C,Rd(7)Z,C,N,VLRORRdRotate Right Through CarryRd(7) \leftarrow C,Rd(n+1), C,Rd(0)Z,C,N,VLSWAPRdSwap NibblesRd(3, O) \leftarrow Rd(n+1), n=0.6Z,C,N,VLSWAPRdSwap NibblesSREG(s) \leftarrow 1SREG(s)LSURAPRdSwap NibblesSREG(s) \leftarrow 1SREG(s)LBSTsF lag SetSREG(s) \leftarrow 1SREG(s)LBCLRsF lag Set Nor Register to TT \leftarrow (h)TLBLDRd, bBit Store from Register to TT \leftarrow (h)TNoneSECISet CarryC \leftarrow 1CCCSECISet CarryC \leftarrow 0CSSSECISet CarryC \leftarrow 0CCCSECIClear Yaor ClagZ \leftarrow 0CC <td>SPM</td> <td></td> <td>Store Program Memory</td> <td>(Z) ← R1:R0</td> <td>None</td> <td>-</td>	SPM		Store Program Memory	(Z) ← R1:R0	None	-
PUSHRrPush Register on StackSTACK \leftarrow RrNonePOPRdPop Register from StackRd \leftarrow STACKNonePOFRdPop Register from StackRd \leftarrow STACKNoneBIT AND BIT-TEST/UCTIONSSBIP,bSet Bit in I/O RegisterI/O(P,b) \leftarrow 1NoneCBIP,bClear Bit in I/O RegisterI/O(P,b) \leftarrow 0NoneNoneCBIP,bClear Bit in I/O RegisterI/O(P,b) \leftarrow 0NoneNoneLSLRdLogical Shift RightRd(n) \leftarrow Rd(n,1), Rd(n) \leftarrow 0Z,C,N,VI/OROLRdRotate Right Through CarryRd(D) \leftarrow C,Rd(n+1) \leftarrow Rd(n,1), C=-Rd(T, 2,C,N,VI/ORORRdRotate Right Through CarryRd(D) \leftarrow Rd(n+1), n=0.6Z,C,N,VI/OSWAPRdSwap NibblesRd(3, \bigcirc C-Rd(T, 4), Rd(T,	IN	Rd, P	In Port	$Rd \gets P$	None	1
POPRdPop Register from StackRd \leftarrow STACKNoneBIT AND BIT-TEST INSTRUCTONSSBIP,bSet Bit in I/O RegisterI/O(P,b) $\leftarrow 1$ NoneI/OCBIP,bClear Bit in I/O RegisterI/O(P,b) $\leftarrow 0$ NoneI/OCBIP,bClear Bit in I/O RegisterI/O(P,b) $\leftarrow 0$ NoneI/OLSLRdLogical Shift LeftRd(n+1) \leftarrow Rd(n), Rd(0) $\leftarrow 0$ Z,C,N,VI/OLSRRdLogical Shift LeftRd(n) \leftarrow Rd(n+1), Rd(7) $\leftarrow 0$ Z,C,N,VI/OLSRRdRotate Left Through CarryRd(n) \leftarrow Rd(n+1), C,C,Rd(n), C,C,Rd(7)Z,C,N,VI/ORORRdRotate Left Through CarryRd(n) \leftarrow Rd(n+1), n=0.6Z,C,N,VI/OSWAPRdSwap NibblesRd(a) \leftarrow Rd(n+1), n=0.6Z,C,N,VI/OSWAPRdSwap NibblesRd(a) \leftarrow Rd(n+1), n=0.6Z,C,N,VI/OBSTsFlag SetSREG(s) $\leftarrow 0$ SREG(s)I/OBCLRsFlag SetSREG(s) $\leftarrow 0$ SREG(s)I/OBCLRsFlag ClearSREG(s) $\leftarrow 0$ SREG(s)I/OBLDRd, bBit Istore from Register to TT \leftarrow Rr(b)TI/OSECISet CarryC $\leftarrow 1$ C $\leftarrow 0$ I/OSECISet CarryC $\leftarrow 1$ NoneI/OSELIClear CarryC $\leftarrow 0$ CI/OSEZISet Zero FlagZ $\leftarrow 1$ Z $\leftarrow 0$ I/OSEZ<	OUT	P, Rr	Out Port	$P \leftarrow Rr$	None	1
BIT AND BIT-TEST INSTRUCTIONSSBIP,bSet Bit in I/O RegisterI/O(P,b) $\leftarrow 1$ NoneCBIP,bClear Bit in I/O RegisterI/O(P,b) $\leftarrow 0$ NoneLSLRdLogical Shift LoftRd(n+1), Rd(0) $\leftarrow 0$ Z,C,N,VLSRRdLogical Shift RightRd(n) $\leftarrow Rd(n+1), Rd(7) \leftarrow 0$ Z,C,N,VROLRdRotate Left Through CarryRd(7) $\leftarrow C,Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$ Z,C,N,VRORRdRotate Right Through CarryRd(7) $\leftarrow C,Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$ Z,C,N,VASRRdArithmetic Shift RightRd(7) $\leftarrow C,Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$ Z,C,N,VSWAPRdSwap NibblesRd(3, a) $\leftarrow Rd(7, 4), eRd(3, 0)$ NoneBSETsFlag SetSREG(s) $\leftarrow 1$ SREG(s)BCLRsFlag SetSREG(s) $\leftarrow 0$ SREG(s)EBSTRr, bBit Store from Register to TT $\leftarrow Rr(b)$ TIBLDRd, bBit Idad from T to RegisterRd(b) $\leftarrow T$ NoneSSECSet CarryC $\leftarrow 1$ CCICLNClear Agative FlagN $\leftarrow 0$ NSSEZSet Zaro FlagZ $\leftarrow 0$ ZZICL2Clear Agative FlagC $\leftarrow 1$ IICL3Clear Agative FlagX $\leftarrow 0$ NSSEZSet Zaro FlagZ $\leftarrow 0$ ZICL4Global Interrupt EnableI $\leftarrow 0$ IICL5Global Interrupt EnableI $\leftarrow 0$ I <td>PUSH</td> <td>Rr</td> <td>Push Register on Stack</td> <td>$STACK \leftarrow Rr$</td> <td>None</td> <td>2</td>	PUSH	Rr	Push Register on Stack	$STACK \leftarrow Rr$	None	2
SBIP,bSet Bit in I/O Register $VO(P,b) \leftarrow 1$ NoneNoneCBIP,bClear Bit in I/O Register $IO(P,b) \leftarrow 0$ NoneNoneLSLRdLogical Shift Left $Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$ Z,C,N,V ZLSRRdLogical Shift Right $Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$ Z,C,N,V ZROLRdRotate Left Through Carry $Rd(0) \leftarrow C,Rd(n+1) \leftarrow Rd(n), C-Rd(0)$ Z,C,N,V ZRORRdAnthenetic Shift Right $Rd(7) \leftarrow C,Rd(n+1), C-Rd(0)$ Z,C,N,V ZSWAPRdAnthenetic Shift Right $Rd(7) \leftarrow C,Rd(n+1), C-Rd(0)$ Z,C,N,V ZSWAPRdSwap Nibbles $Rd(3,0) \leftarrow Rd(n+1), C-Rd(0)$ Z,C,N,V ZSWAPRdSwap Nibbles $Rd(3,0) \leftarrow Rd(n+1), C-Rd(0)$ Z,C,N,V ZSWAPRdSwap Nibbles $Rd(3,0) \leftarrow Rd(n+1), C-Rd(0,0)$ Z,C,N,V ZSWAPRdSwap Nibbles $Rd(0, -T, A), Rd(7, A), C-Rd(0,0)$ Z,C,N,V ZSWAPSwap NibblesSwap Nibbles $Reg(s) \leftarrow 1$ NZSCSwap NibblesSwap Nibbles $Reg(s) \leftarrow 1$ N <t< td=""><td>POP</td><td>Rd</td><td>Pop Register from Stack</td><td>$Rd \leftarrow STACK$</td><td>None</td><td>2</td></t<>	POP	Rd	Pop Register from Stack	$Rd \leftarrow STACK$	None	2
CBIP,bClear Bit in VO RegisterVO(P,b) $\leftarrow 0$ NoneNoneLSLRdLogical Shift LeftRd(n+1) \leftarrow Rd(n), Rd(0) $\leftarrow 0$ Z,C,N,VLLSRRdLogical Shift RightRd(n) \leftarrow Rd(n+1), Rd(0) $\leftarrow 0$ Z,C,N,VLROLRdRotate Left Through CarryRd(0) \leftarrow Rd(n+1), Rd(0), \leftarrow Rd(7)Z,C,N,VLRORRdRotate Right Through CarryRd(7) \leftarrow C,Rd(n+1), Rd(0), \leftarrow Rd(n+1), C–Rd(0)Z,C,N,VLASRRdAntimetic Shift RightRd(n) \leftarrow Rd(n+1), n=0.6Z,C,N,VLSWAPRdSwap NibblesRd(3.0) \leftarrow Rd(n-1), n=0.6Z,C,N,VLBSETsFlag SetSREG(s) $\leftarrow 1$ SREG(s)SREG(s)BCLRsFlag SetSREG(s) $\leftarrow 1$ SREG(s)LBCLRsFlag ClearSREG(s) $\leftarrow 1$ SREG(s)LBLDRd, bBit load from T to Register to TT $\leftarrow R(b)$ TMoneSECLSet CarryC $\leftarrow 0$ CCCCLCIClear CarryC $\leftarrow 0$ NZCSEXISet Zaro FlagZ $\leftarrow 0$ ZIICL2IClear Zero FlagZ $\leftarrow 0$ ZIISEXIGlobal Interrupt EnableI $\leftarrow 0$ IIICL3Global Interrupt EnableI $\leftarrow 0$ IIIISESIGlobal Interrupt DisableS $\leftarrow 0$ SSIII	BIT AND BIT-TEST	INSTRUCTIONS				
LSLRdLogical Shift LeftRd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0Z, C, N, VILSRRdLogical Shift RightRd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0Z, C, N, VIROLRdRd tate Left Through CarryRd(0) \leftarrow C, Rd(n+1), \leftarrow Rd(n), $C \leftarrow$ Rd(7)Z, C, N, VIRORRdRotate Right Through CarryRd(7) \leftarrow C, Rd(n+1), \leftarrow Rd(n), $C \leftarrow$ Rd(7)Z, C, N, VIASRRdAnthmetic Shift RightRd(n) \leftarrow Rd(n+1), n=0.6Z, C, N, VISWAPRdSwap NibblesRd(3.0) \leftarrow Rd(7.4), Rd(7.4) \leftarrow Rd(3.0)NoneIBSETsFlag SetSREG(s) \leftarrow 1SREG(s)IBCLRsFlag ClearSREG(s) \leftarrow 0SREG(s)IBLDRd, bBit Store from Register to TT \leftarrow Rr(b)TIBLDRd, bBit load from T to RegisterRd(b) \leftarrow TNoneISECSet CarryC \leftarrow 0CIICLCClear CarryC \leftarrow 0CISEXASet Negative FlagN \leftarrow 0NICLNClear Zero FlagZ \leftarrow 0ZIISEZSet Zero FlagZ \leftarrow 0ZIICLClear Zero FlagZ \leftarrow 0ZIISEZSet Zero FlagS \leftarrow 1SIICLClear Zero FlagS \leftarrow 1SIISEZSet Signed Test FlagS \leftarrow 0SIICL </td <td>SBI</td> <td>P,b</td> <td>Set Bit in I/O Register</td> <td>$I/O(P,b) \leftarrow 1$</td> <td>None</td> <td>2</td>	SBI	P,b	Set Bit in I/O Register	$I/O(P,b) \leftarrow 1$	None	2
LSRRdLogical Shift Right $Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$ Z, C, N, V ROLRdRotate Left Through Carry $Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow C, Rd(7)$ Z, C, N, V RORRdRdRotate Right Through Carry $Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$ Z, C, N, V ASRRdArithmetic Shift Right $Rd(n) \leftarrow Rd(n+1), n \leftarrow 0.6$ Z, C, N, V Z, C, N, V SWAPRdSwap Nibbles $Rd(3, 0) \leftarrow Rd(7, 4), \leftarrow Rd(3, 0)$ None Z, C, N, V BSTsFlag Set $SREG(s) \leftarrow 1$ $SREG(s)$ Z, C, N, V BCLRsFlag Clear $SREG(s) \leftarrow 1$ $SREG(s)$ Z, C, N, V BLDRd, bBit Store from Register to T $T \leftarrow Rr(b)$ T T BLDRd, bBit load from T to RegisterRd(b) $\leftarrow T$ None R SECSet Carry $C \leftarrow 1$ C C C CLCClear Carry $C \leftarrow 0$ C C SENSet Negative Flag $N \leftarrow 0$ N D SEZSet Set Set Plag $Z \leftarrow 0$ Z C CL2Clear Zero Flag $Z \leftarrow 0$ Z Z SE3Global Interrupt Enable $I \leftarrow 0$ I I SESSet Signed Test Flag $S \leftarrow 0$ S S CL3Clear Signed Test Flag $S \leftarrow 0$ S S SEVSet Signed Test Flag $S \leftarrow 0$ S S SETSet T in SREG $V \leftarrow 0$ V V	CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
ROLRdRotate Left Through Carry $Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$ Z, C, N, VIRORRdRotate Right Through Carry $Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$ Z, C, N, VIASRRdArithmetic Shift Right $Rd(n) \leftarrow Rd(n+1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ SREG(s)IBLTsFlag ClearSREG(s) < 1	LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
ROLRdRotate Left Through Carry $Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$ Z, C, N, VIRORRdRotate Right Through Carry $Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$ Z, C, N, VIASRRdArithmetic Shift Right $Rd(n) \leftarrow Rd(n+1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ Z, C, N, VISWAPRdSwap Nibbles $Rd(3.0) \leftarrow Rd(n-1), n=0.6$ SREG(s)IBLTsFlag ClearSREG(s) < 1	LSR	Rd	Logical Shift Right		Z.C.N.V	1
RORRdRotate Right Through Carry $Rd(7) \leftarrow C,Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$ Z, C, N, VASRRdArithmetic Shift Right $Rd(n) \leftarrow Rd(n+1), n=0.6$ Z, C, N, VSWAPRdSwap Nibbles $Rd(3, 0) \leftarrow Rd(7, 4), Rd(7, 4) \leftarrow Rd(3, 0)$ NoneBSETsFlag SetSREG(s) $\leftarrow 1$ SREG(s)BCLRsFlag ClearSREG(s) $\leftarrow 0$ SREG(s)BSTRr, bBit Store from Register to TT $\leftarrow Rr(b)$ TBLDRd, bBit load from T to RegisterRd(b) $\leftarrow T$ NoneSECCSet CarryC $\leftarrow -1$ CCLCClear CarryC $\leftarrow -0$ CCSENClear Negative FlagN $\leftarrow 0$ NNCLNClear Negative FlagN $\leftarrow 0$ ZCCL2Clear Set Zero FlagZ $\leftarrow 0$ ZCCL2Clear Carg FlagZ $\leftarrow 0$ ZCSEIGlobal Interrupt EnableI $\leftarrow 0$ ICCL3Set Signed Test FlagS $\leftarrow 1$ SSSEIGlobal Interrupt DisableS $\leftarrow 0$ SCSEVAction Set Twos Complement OverflowV $\leftarrow 1$ VVSETSet Twos Complement OverflowV $\leftarrow 0$ VV						1
ASRRdArithmetic Shift RightRd(n) \leftarrow Rd(n+1), n=0.6Z,C,N,VSWAPRdSwap NibblesRd(30) \leftarrow Rd(n-1), n=0.6Z,C,N,VBSTsFlag SetSREG(s) \leftarrow 1SREG(s)BCLRsFlag ClearSREG(s) \leftarrow 0SREG(s)BSTRr, bBit Store from Register to TT \leftarrow Rr(b)TBLDRd, bBit load from T to RegisterRd(b) \leftarrow TNoneSECSet CarryC \leftarrow 1CCCLCClear CarryC \leftarrow 0CCSENSet Negative FlagN \leftarrow 1NCCLNClear Vegative FlagN \leftarrow 0NCSEIGlobal Interrupt EnableI \leftarrow 1ICCLIGlobal Interrupt EnableI \leftarrow 0ISSESSet Signed Test FlagS \leftarrow 0SCCLSSet Signed Test FlagS \leftarrow 0SSCLSSet Signed Test FlagS \leftarrow 0SCCLSSet Signed Test FlagS \leftarrow 0SSCLSClear Xognelment OverflowV \leftarrow 1VCCLVQClear Twos Complement OverflowV \leftarrow 1VVSETSet T in SREGT \leftarrow 1T \leftarrow 1TT						1
SWAPRdSwap NibblesRd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)NoneBSETsFlag SetSREG(s) \leftarrow 1SREG(s)SREG(s)BCLRsFlag ClearSREG(s) \leftarrow 0SREG(s)SREG(s)BSTRr, bBit Store from Register to TT \leftarrow Rr(b)TTBLDRd, bBit load from T to RegisterRd(b) \leftarrow TNoneSECSECSet CarryC \leftarrow 1CCCLCClear CarryC \leftarrow 0CCSENSet Negative FlagN \leftarrow 1NCCLNClear Negative FlagN \leftarrow 0NCSEZSet Zero FlagZ \leftarrow 0ZCCLZClear Zero FlagZ \leftarrow 0ZCSEIGlobal Interrupt EnableI \leftarrow 1ICCLIGlobal Interrupt DisableI \leftarrow 0SSSESSet Signed Test FlagS \leftarrow 0SSCLSClear Signed Test FlagS \leftarrow 0SSSEVASet Twos Complement Overflow.V \leftarrow 1VCSETSet T in SREGT \leftarrow 1TSS						1
BSETsFlag SetSREG(s)SREG(s)SREG(s)BCLRsFlag ClearSREG(s)SREG(s)SREG(s)SREG(s)BSTRr, bBit Store from Register to TTTR(b)TBLDRd, bBit load from T to RegisterRd(b) \leftarrow TNoneSECSECSet CarryC<-1						1
BCLRsFlag ClearSREG(s) $\leftarrow 0$ SREG(s)BSTRr, bBit Store from Register to T $T \leftarrow Rr(b)$ TBLDRd, bBit load from T to RegisterRd(b) $\leftarrow T$ NoneSECSet Carry $C \leftarrow 1$ CCLCClear Carry $C \leftarrow 0$ CSENSet Negative FlagN $\leftarrow 1$ NCLNClear Negative FlagN $\leftarrow 0$ NSEZSet Zero FlagZ $\leftarrow 1$ ZCLZClear Argen FlagI $\leftarrow 1$ ISEZSet Zero FlagZ $\leftarrow 1$ ZCLZClear Signed Test FlagI $\leftarrow 1$ ICLIGlobal Interrupt EnableI $\leftarrow 0$ ISESSet Signed Test FlagS $\leftarrow 1$ SCLSClear Signed Test FlagS $\leftarrow 0$ SSEVSet Twos Complement Overflow.V $\leftarrow 1$ VSETSet Tin SREGT $\leftarrow 1$ T						1
BSTRr, bBit Store from Register to TT \leftarrow Rr(b)TNoneBLDRd, bBit load from T to RegisterRd(b) \leftarrow TNoneNoneSECSet CarryC \leftarrow 1CCCLCClear CarryC \leftarrow 0CCSENSet Negative FlagN \leftarrow 1NCCLNClear Negative FlagN \leftarrow 0NCSEZSet Zero FlagZ \leftarrow 1ZZCLZClear Zero FlagZ \leftarrow 0ZCSEIGlobal Interrupt EnableI \leftarrow 1ICCLISet Signed Test FlagS \leftarrow 1SSCLSClear Signed Test FlagS \leftarrow 0SSSEVSet Twos Complement Overflow.V \leftarrow 1VVSETSet Twos Complement OverflowV \leftarrow 0VTSETSet T in SREGT \leftarrow 1TT			5			1
BLDRd, bBit load from T to RegisterRd(b) \leftarrow TNoneSECSet CarryC \leftarrow 1CCLCClear CarryC \leftarrow 0SENSet Negative FlagN \leftarrow 1CLNClear Negative FlagN \leftarrow 0SEZSet Zero FlagZ \leftarrow 1CLZClear Zero FlagZ \leftarrow 0SEIGlobal Interrupt EnableI \leftarrow 1CLIGlobal Interrupt DisableI \leftarrow 0SESSet Signed Test FlagS \leftarrow 1SESClear Signed Test FlagS \leftarrow 0SEVSet Twos Complement Overflow.V \leftarrow 1CLVClear Twos Complement OverflowV \leftarrow 0SETSet T in SREGT \leftarrow 1T						1
SECSet Carry $C \leftarrow 1$ CCCLCClear Carry $C \leftarrow 0$ CCSENSet Negative Flag $N \leftarrow 1$ NCCLNClear Negative Flag $N \leftarrow 0$ NCSEZSet Zero Flag $Z \leftarrow 1$ ZCCLZClear Zero Flag $Z \leftarrow 0$ ZCSEIGlobal Interrupt Enable $I \leftarrow 1$ ICCLIGlobal Interrupt Disable $I \leftarrow 0$ ICSESSet Signed Test Flag $S \leftarrow 1$ SSCSEVClear Xigned Test Flag $S \leftarrow 0$ SCCSEVSet Twos Complement Overflow. $V \leftarrow 0$ VCSETSet T in SREG $T \leftarrow 1$ TTC					-	
CLCClear Carry $C \leftarrow 0$ CCSENSet Negative Flag $N \leftarrow 1$ NCCLNClear Negative Flag $N \leftarrow 0$ NCSEZSet Zero Flag $Z \leftarrow 1$ ZCCLZClear Zero Flag $Z \leftarrow 0$ ZCSEIGlobal Interrupt Enable $I \leftarrow 1$ ICCLIGlobal Interrupt Disable $I \leftarrow 0$ ICSESSet Signed Test Flag $S \leftarrow 1$ SSCLSClear Signed Test Flag $S \leftarrow 0$ SCSEVSet Twos Complement Overflow. $V \leftarrow 1$ VCCLVClear Twos Complement Overflow $V \leftarrow 0$ VCSETSet T in SREG $T \leftarrow 1$ TT		HU, D				1
SENSet Negative Flag $N \leftarrow 1$ NCLNClear Negative Flag $N \leftarrow 0$ NSEZSet Zero Flag $Z \leftarrow 1$ ZCLZClear Zero Flag $Z \leftarrow 0$ ZSEIGlobal Interrupt Enable $I \leftarrow 1$ ICLIGlobal Interrupt Disable $I \leftarrow 0$ ISESSet Signed Test Flag $S \leftarrow 1$ SCLSClear Signed Test Flag $S \leftarrow 0$ SSEVSet Twos Complement Overflow. $V \leftarrow 1$ VCLVClear Twos Complement Overflow $V \leftarrow 0$ V						1
CLNClear Negative Flag $N \leftarrow 0$ NNSEZSet Zero Flag $Z \leftarrow 1$ ZZCLZClear Zero Flag $Z \leftarrow 0$ ZZSEIGlobal Interrupt Enable $I \leftarrow 1$ IICLIGlobal Interrupt Disable $I \leftarrow 0$ IISESSet Signed Test Flag $S \leftarrow 1$ SSCLSClear Signed Test Flag $S \leftarrow 0$ SISEVSet Twos Complement Overflow. $V \leftarrow 1$ VICLVClear Twos Complement Overflow $V \leftarrow 0$ VISETSet T in SREG $T \leftarrow 1$ TI		+	·			1
SEZSet Zero Flag $Z \leftarrow 1$ Z CLZClear Zero Flag $Z \leftarrow 0$ Z SEIGlobal Interrupt Enable $I \leftarrow 1$ I CLIGlobal Interrupt Disable $I \leftarrow 0$ I SESSet Signed Test Flag $S \leftarrow 1$ S CLSClear Signed Test Flag $S \leftarrow 0$ S SEVSet Twos Complement Overflow. $V \leftarrow 1$ V CLVClear Twos Complement Overflow $V \leftarrow 0$ V						1
CLZClear Zero Flag $Z \leftarrow 0$ Z SEIGlobal Interrupt Enable $I \leftarrow 1$ I CLIGlobal Interrupt Disable $I \leftarrow 0$ I SESSet Signed Test Flag $S \leftarrow 1$ S CLSClear Signed Test Flag $S \leftarrow 0$ S SEVSet Twos Complement Overflow. $V \leftarrow 1$ V CLVClear Twos Complement Overflow $V \leftarrow 0$ V SETSet T in SREG $T \leftarrow 1$ T			· · ·	1		1
SEIGlobal Interrupt Enable $I \leftarrow 1$ ICLIGlobal Interrupt Disable $I \leftarrow 0$ ISESSet Signed Test Flag $S \leftarrow 1$ SCLSClear Signed Test Flag $S \leftarrow 0$ SSEVSet Twos Complement Overflow. $V \leftarrow 1$ VCLVClear Twos Complement Overflow $V \leftarrow 0$ VSETSet T in SREG $T \leftarrow 1$ T				1		1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CLZ		Clear Zero Flag	$Z \leftarrow 0$	Z	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SEI		Global Interrupt Enable	← 1	1	1
CLS Clear Signed Test Flag S ← 0 S SEV Set Twos Complement Overflow. V ← 1 V CLV Clear Twos Complement Overflow V ← 0 V SET Set T in SREG T ← 1 T	CLI		Global Interrupt Disable	1 ← 0	1	1
CLS Clear Signed Test Flag S ← 0 S SEV Set Twos Complement Overflow. V ← 1 V CLV Clear Twos Complement Overflow V ← 0 V SET Set T in SREG T ← 1 T	SES		Set Signed Test Flag	S ← 1	S	1
SEV Set Twos Complement Overflow. V ← 1 V CLV Clear Twos Complement Overflow V ← 0 V SET Set T in SREG T ← 1 T						1
CLV Clear Twos Complement Overflow V ← 0 V SET Set T in SREG T ← 1 T						1
SET Set T in SREG T ← 1 T						1
						1
minemonics Operands Description Operation Flags #C		Onerrada				·
	whemonics	Operands	Description	Operation	riags	#Clocks

AIMEL

if (I = 1) then PC \leftarrow PC + k + 1

None

1/2

Instruction Set Summary (Continued)

Branch if Interrupt Enabled

BRIE

k

Instruction Set Summary (Continued)

CLT		Clear T in SREG	$T \leftarrow 0$	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	$H \leftarrow 0$	Н	1
MCU CONTROL I	NSTRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1

Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
8	2.7 - 5.5	ATmega8L-8AC	32A	Commercial
		ATmega8L-8PC	28P3	(0°C to 70°C)
		ATmega8L-8MC	32M1-A	
		ATmega8L-8AI	32A	Industrial
		ATmega8L-8PI	28P3	(-40°C to 85°C)
		ATmega8L-8MI	32M1-A	
16	4.5 - 5.5	ATmega8-16AC	32A	Commercial
		ATmega8-16PC	28P3	(0°C to 70°C)
		ATmega8-16MC	32M1-A	
		ATmega8-16AI	32A	Industrial
		ATmega8-16PI	28P3	(-40°C to 85°C)
		ATmega8-16MI	32M1-A	

Note: This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

	Package Type
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Micro Lead Frame Package (MLF)

Packaging Information

32A

28P3

14 ATmega8(L)

32M1-A

Erratas

ATmega8 Rev. D, E, F, and G The revision letter in this section refers to the revision of the ATmega8 device.

CKOPT Does not Enable Internal Capacitors on XTALn/TOSCn Pins when 32 KHz
 Oscillator is Used to Clock the Asynchronous Timer/Counter2

1. CKOPT Does not Enable Internal Capacitors on XTALn/TOSCn Pins when 32 KHz Oscillator is Used to Clock the Asynchronous Timer/Counter2

When the internal RC Oscillator is used as the main clock source, it is possible to run the Timer/Counter2 asynchronously by connecting a 32 KHz Oscillator between XTAL1/TOSC1 and XTAL2/TOSC2. But when the internal RC Oscillator is selected as the main clock source, the CKOPT Fuse does not control the internal capacitors on XTAL1/TOSC1 and XTAL2/TOSC2. As long as there are no capacitors connected to XTAL1/TOSC1 and XTAL2/TOSC2, safe operation of the Oscillator is not guaranteed.

Problem fix/Workaround

Use external capacitors in the range of 20 - 36 pF on XTAL1/TOSC1 and XTAL2/TOSC2. This will be fixed in ATmega8 Rev. G where the CKOPT Fuse will control internal capacitors also when internal RC Oscillator is selected as main clock source. For ATmega8 Rev. G, CKOPT = 0 (programmed) will enable the internal capacitors on XTAL1 and XTAL2. Customers who want compatibility between Rev. G and older revisions, must ensure that CKOPT is unprogrammed (CKOPT = 1).

Datasheet Change Log for ATmega8

Changes from Rev. 2486K-08/03 to Rev. 2486L-10/03

Changes from Rev. 2486K-08/03 to Rev. 2486L-10/03 This document contains a log on the changes made to the datasheet for ATmega8.

All page numbers refers to this document.

1. Updated "Calibrated Internal RC Oscillator" on page 28.

All page numbers refers to this document.

- 1. Removed "Preliminary" and TBDs from the datasheet.
- 2. Renamed ICP to ICP1 in the datasheet.
- 3. Removed instructions CALL and JMP from the datasheet.
- 4. Updated t_{RST} in Table 15 on page 36, V_{BG} in Table 16 on page 40, Table 100 on page 239 and Table 102 on page 241.
- 5. Replaced text "XTAL1 and XTAL2 should be left unconnected (NC)" after Table 9 in "Calibrated Internal RC Oscillator" on page 28. Added text regarding XTAL1/XTAL2 and CKOPT Fuse in "Timer/Counter Oscillator" on page 30.
- 6. Updated Watchdog Timer code examples in "Timed Sequences for Changing the Configuration of the Watchdog Timer" on page 43.
- 7. Removed bit 4, ADHSM, from "Special Function IO Register SFIOR" on page 56.
- 8. Added note 2 to Figure 103 on page 212.
- 9. Updated item 4 in the "Serial Programming Algorithm" on page 233.
- 10. Added $t_{WD_{FUSE}}$ to Table 97 on page 234 and updated Read Calibration Byte, Byte 3, in Table 98 on page 235.
- 11. Updated Absolute Maximum Ratings* and DC Characteristics in "Electrical Characteristics" on page 237.

All page numbers refers to this document.

- 1. Updated V_{BOT} values in Table 15 on page 36.
- 2. Updated "ADC Characteristics" on page 243.
- 3. Updated "ATmega8 Typical Characteristics" on page 244.
- 4. Updated "Erratas" on page 16.

Changes from Rev. 2486I-12/02 to Rev. 2486J-02/03

Changes from Rev.

2486J-02/03 to Rev.

2486K-08/03

All page numbers refers to this document.

- 1. Improved the description of "Asynchronous Timer Clock clkASY" on page 24.
- 2. Removed reference to the "Multipurpose Oscillator" application note and the "32 kHz Crystal Oscillator" application note, which do not exist.
- 3. Corrected OCn waveforms in Figure 38 on page 88.
- 4. Various minor Timer 1 corrections.
- 5. Various minor TWI corrections.
- 6. Added note under "Filling the Temporary Buffer (Page Loading)" on page 213 about writing to the EEPROM during an SPM Page load.
- 7. Removed ADHSM completely.
- 8. Added section "EEPROM Write during Power-down Sleep Mode" on page 21.
- 9. Removed XTAL1 and XTAL2 description on page 5 because they were already described as part of "Port B (PB7..PB0) XTAL1/ XTAL2/TOSC1/TOSC2" on page 5.
- 10. Improved the table under "SPI Timing Characteristics" on page 241 and removed the table under "SPI Serial Programming Characteristics" on page 236.
- 11. Corrected PC6 in "Alternate Functions of Port C" on page 59.
- 12. Corrected PB6 and PB7 in "Alternate Functions of Port B" on page 56.
- 13. Corrected 230.4 Mbps to 230.4 kbps under "Examples of Baud Rate Setting" on page 156.
- 14. Added information about PWM symmetry for Timer 2 in "Phase Correct PWM Mode" on page 111.
- 15. Added thick lines around accessible registers in Figure 76 on page 166.
- 16. Changed "will be ignored" to "must be written to zero" for unused Z-pointer bits under "Performing a Page Write" on page 213.
- 17. Added note for RSTDISBL Fuse in Table 87 on page 220.
- 18.Updated drawings in "Packaging Information" on page 13.
- 1. Added errata for Rev D, E, and F on page 16.

Changes from Rev. 2486H-09/02 to Rev. 2486I-12/02

Changes from Rev. 2486G-09/02 to Rev. 2486H-09/02 1. Changed the Endurance on the Flash to 10,000 Write/Erase Cycles.

18 ATmega8(L)

Changes from Rev. 2486F-07/02 to Rev. 2486G-09/02

Changes from Rev. 2486E-06/02 to Rev. 2486F-07/02

Changes from Rev. 2486D-03/02 to Rev. 2486E-06/02

Changes from Rev. 2486C-03/02 to Rev. 2486D-03/02 All page numbers refers to this document.

1 Updated Table 103, "ADC Characteristics," on page 243.

All page numbers refers to this document.

- 1 Changes in "Digital Input Enable and Sleep Modes" on page 53.
- 2 Addition of OCS2 in "MOSI/OC2 Port B, Bit 3" on page 57.
- 3 The following tables has been updated:

Table 51, "CPOL and CPHA Functionality," on page 129, Table 59, "UCPOL Bit Settings," on page 155, Table 72, "Analog Comparator Multiplexed Input(1)," on page 192, Table 73, "ADC Conversion Time," on page 197, Table 75, "Input Channel Selections," on page 203, and Table 84, "Explanation of Different Variables used in Figure 103 and the Mapping to the Z-pointer," on page 218.

5 Changes in "Reading the Calibration Byte" on page 230.

6 Corrected Errors in Cross References.

All page numbers refers to this document.

1 Updated Some Preliminary Test Limits and Characterization Data

The following tables have been updated:

Table 15, "Reset Characteristics," on page 36, Table 16, "Internal Voltage Reference Characteristics," on page 40, DC Characteristics on page 237, Table , "ADC Characteristics," on page 243.

2 Changes in External Clock Frequency

Added the description at the end of "External Clock" on page 30. Added period changing data in Table 99, "External Clock Drive," on page 239.

3 Updated TWI Chapter

More details regarding use of the TWI bit rate prescaler and a Table 65, "TWI Bit Rate Prescaler," on page 170.

All page numbers refers to this document.

1 Updated Typical Start-up Times.

The following tables has been updated:

Table 5, "Start-up Times for the Crystal Oscillator Clock Selection," on page 26, Table 6, "Start-up Times for the Low-frequency Crystal Oscillator Clock Selection," on page 26, Table 8, "Start-up Times for the External RC Oscillator Clock Selection," on page 27, and Table 12, "Start-up Times for the External Clock Selection," on page 30.

2 Added "ATmega8 Typical Characteristics" on page 244.

Changes from Rev. 2486B-12/01 to Rev. 2486C-03/02

All page numbers refers to this document.

1 Updated TWI Chapter.

More details regarding use of the TWI Power-down operation and using the TWI as Master with low TWBRR values are added into the datasheet.

Added the note at the end of the "Bit Rate Generator Unit" on page 167.

Added the description at the end of "Address Match Unit" on page 167.

2 Updated Description of OSCCAL Calibration Byte.

In the datasheet, it was not explained how to take advantage of the calibration bytes for 2, 4, and 8 MHz Oscillator selections. This is now added in the following sections:

Improved description of "Oscillator Calibration Register – OSCCAL" on page 29 and "Calibration Byte" on page 221.

3 Added Some Preliminary Test Limits and Characterization Data.

Removed some of the TBD's in the following tables and pages:

Table 3 on page 24, Table 15 on page 36, Table 16 on page 40, Table 17 on page 42, "TA = $-40 \times C$ to $85 \times C$, VCC = 2.7V to 5.5V (unless otherwise noted)" on page 237, Table 99 on page 239, and Table 102 on page 241.

4 Updated Programming Figures.

Figure 104 on page 222 and Figure 112 on page 232 are updated to also reflect that AVCC must be connected during Programming mode.

5 Added a Description on how to Enter Parallel Programming Mode if RESET Pin is Disabled or if External Oscillators are Selected.

Added a note in section "Enter Programming Mode" on page 224.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel[®] and combinations thereof, AVR[®], and AVR Studio[®] are the registered trademarks of Atmel Corporation or its subsidiaries. Microsoft[®], Windows[®], Windows NT[®], and Windows XP[®] are the registered trademarks of Microsoft Corporation. Other terms and product names may be the trademarks of others

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.